• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于卡尔曼滤波的快时变稀疏信道估计新技术

袁伟娜 王嘉璇

袁伟娜, 王嘉璇. 基于卡尔曼滤波的快时变稀疏信道估计新技术[J]. 西南交通大学学报, 2018, 53(4): 835-841. doi: 10.3969/j.issn.0258-2724.2018.04.023
引用本文: 袁伟娜, 王嘉璇. 基于卡尔曼滤波的快时变稀疏信道估计新技术[J]. 西南交通大学学报, 2018, 53(4): 835-841. doi: 10.3969/j.issn.0258-2724.2018.04.023
YUAN Weina, WANG Jiaxuan. Fast Time-Varying Sparse Channel Estimation Based on Kalman Filter[J]. Journal of Southwest Jiaotong University, 2018, 53(4): 835-841. doi: 10.3969/j.issn.0258-2724.2018.04.023
Citation: YUAN Weina, WANG Jiaxuan. Fast Time-Varying Sparse Channel Estimation Based on Kalman Filter[J]. Journal of Southwest Jiaotong University, 2018, 53(4): 835-841. doi: 10.3969/j.issn.0258-2724.2018.04.023

基于卡尔曼滤波的快时变稀疏信道估计新技术

doi: 10.3969/j.issn.0258-2724.2018.04.023
基金项目: 

中央高校基本科研业务费专项基金资助项目 222201714032

国家自然科学基金资助项目 61501187

详细信息
    作者简介:

    袁伟娜(1979-), 女, 副教授, 博士, 研究方向为无线通信, E-mail:wnyuan@ecust.edu.cn

  • 中图分类号: TN929.5

Fast Time-Varying Sparse Channel Estimation Based on Kalman Filter

  • 摘要: 针对高铁以及山区环境下正交频分复用(orthogonal frequency division multiplexing,OFDM)通信系统的信道估计问题,提出一种基于卡尔曼滤波的快时变稀疏信道估计方法.该方法基于快时变信道的基扩展模型(basic expansion model,BEM),应用压缩感知(compressed sensing,CS)理论进行稀疏时延估计,并应用卡尔曼滤波(Kalman filter,KF)技术对BEM系数进行估计,进而获得信道增益.仿真结果表明,在相同信噪比(signal to noise ratio,SNR)条件下,随着归一化多普勒频移(frequency-normalized Doppler shift,FND)增大,新方法的信道估计均方差(mean square error,MSE)性能优于传统方法,如当SNR为20 dB,FND为0.1时,新方法较传统方法性能提升了4 dB,表明对信道时变性具有更优的鲁棒性;在相同的多普勒频移条件下,随着SNR增加,各方法的均方差均有所改善,新方法改善更明显,如当FND为0.2时,在信道估计均方差为0.06的条件下,新方法较传统方法获得了6 dB的信噪比增益,表明对抗信道噪声能力更强.

     

  • 图 1  SNR为20 dB, fnd增大时, 各方法的NMSE对比

    Figure 1.  NMSE vs. fnd for SNR is 20 dB

    图 2  fnd=0.2, SNR增大时, 各方法的NMSE对比

    Figure 2.  NMSE vs. SNR for fnd=0.2

    表  1  仿真参数表

    Table  1.   Simulation parameters

    子载
    波数
    CP
    长度
    导频
    长度
    采样
    间隔/μs
    载频
    /GHz
    总径
    主径

    12816322.52205
    下载: 导出CSV
  • WU J, FAN P. A survey on high mobility wireless communications:challenges, opportunities and solutions[J]. IEEE Access, 2016, 4(1):450-476. http://ieeexplore.ieee.org/document/7383229/
    FAN Pingzhi, ERDAL P. Guest editorial:special issue on high mobility wireless communications[J]. Journal of Modern Transportation, 2012, 20(4):197-198. doi: 10.1007/BF03325798
    周杲, 范平志, 郝莉.基于OFDM的DFT加扰矢量码分多址接入技术[J].西南交通大学学报, 2017, 52(1):148-155. doi: 10.3969/j.issn.0258-2724.2017.01.021

    ZHOU Gao, FAN Pingzhi, HAO Li. 0FDM based DFT scrambling vector code division multiple access[J]. Joumal of Southwest Jiaotong University, 2017, 52(1):148-155. doi: 10.3969/j.issn.0258-2724.2017.01.021
    ROOZBEH M, ARASH A, Compressive sensing-based pilot design for sparce channel estimation in OFDM systems[J]. IEEE Communications Letters, 2017, 21(1):4-7. doi: 10.1109/LCOMM.2016.2613086
    LEE D. MIMO OFDM channel estimation via bock stagewise orthogonal mnatching pursuit[J]. IEEE Communications Letters, 2016, 20(10):2115-2118. doi: 10.1109/LCOMM.2016.2594059
    ROOZBEH M, ARASH A. Determinitic pilot design for sparce channel estimation in MISO/multi-user OFDM systems[J]. IEEE Transactions on Wireless Communications, 2017, 16(1):129-140. doi: 10.1109/TWC.2016.2619699
    叶新荣, 朱卫平, 张爱清, 等. OFDM系统双选择性慢衰落信道的压缩感知估计[J].电子与信息学报, 2015, 37(1):169-174. http://d.old.wanfangdata.com.cn/Periodical/dzkxxk201501026

    YE Xinrong, ZHU Weiping, ZHANG Aiqing, et al. Compressed sensing based on doubly-selective slow-fading channel estimation in ofdm systems cbannel estimation[J]. Journal of electronics and information, 2015, 37(1):169-174. http://d.old.wanfangdata.com.cn/Periodical/dzkxxk201501026
    TAN Guoping, HERFET T. A framework of analyzing OMP-based channel estimations in mobile OFDM systems[J]. IEEE Wireless Communications Letters, 2016, 5(4):408-411. doi: 10.1109/LWC.2016.2571688
    MA Xu, YANG Fang, LIU Sicong, et al. Structured compressive sensing-based channel estimation for time frequency training OFDM systems over doubly selective channel[J]. IEEE Wireless Communications Letters, 2017, 6(2):266-269. doi: 10.1109/LWC.2017.2669974
    CHEN B, CUI Q, YANG F, et al. A novel channel estimation method based on Kalman filter compressed sensing for time-varying OFDM system[C]//International Conference on Wireless Communications & Signal Processing.[S.l.]: IEEE, 2014: 1-5.
    RABBI M F, HOU S W, KO C C. High mobility orthogonal frequency division multiple access channel estimation using basis expansion model[J]. IET Communications, 2010, 4(3):353-367. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0211112117/
    SHENG Zhichao, TUAN H D. Pilot optimization for estimation of high-mobility OFDM channels[J]. IEEE Transactions on Vehicular Technology, 2017, 66(10):8795-8806. doi: 10.1109/TVT.2017.2694821
    HIJAZI H, ROS L. Joint data QR-detection and Kalman estimation for OFDM time-varying Rayleigh channel complex gains[J]. IEEE Transactions on Communications, 2010, 58(1):170-178. doi: 10.1109/TCOMM.2010.01.080296
    BERGER C R, ZHOU S, PREISIG J C, et al. Sparse channel estimation for multicarrier underwater acoustic communication:from subspace method to compressed sensing[J]. IEEE Transactions on Signal Process, 2010, 58(3):1708-1721. doi: 10.1109/TSP.2009.2038424
    JAKES W C, COX D C. Microwave mobile communications[M].[S.l.]: IEEE Press, 1974: 28-46.
    BADDOUR K E, BEAULIEU N C. Autoregressive modeling for fading channel simulation[J]. IEEE Transactions on Wireless Communications, 2005, 4(4):1650-1662. doi: 10.1109/TWC.2005.850327
    QI F, JU Y, SUN S, et al. BEM-based reconstruction of time-varying sparse channel in OFDM systems[C]//Vehicular Technology Conference.[S.l.]: IEEE, 2013: 1-5.
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  464
  • HTML全文浏览量:  242
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-11
  • 刊出日期:  2018-08-01

目录

    /

    返回文章
    返回