• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

脉冲干扰复数域Cohen-Grossberg神经网络的稳定性

徐晓惠 徐全 施继忠 张继业 陈子龙

徐晓惠, 徐全, 施继忠, 张继业, 陈子龙. 脉冲干扰复数域Cohen-Grossberg神经网络的稳定性[J]. 西南交通大学学报, 2018, 53(4): 820-828. doi: 10.3969/j.issn.0258-2724.2018.04.021
引用本文: 徐晓惠, 徐全, 施继忠, 张继业, 陈子龙. 脉冲干扰复数域Cohen-Grossberg神经网络的稳定性[J]. 西南交通大学学报, 2018, 53(4): 820-828. doi: 10.3969/j.issn.0258-2724.2018.04.021
XU Xiaohui, XU Quan, SHI Jizhong, ZHANG Jiye, CHEN Zilong. Stability of Impulsive Disturbance Complex-Valued Cohen-Grossberg Neural Networks in a Complex Number Domain[J]. Journal of Southwest Jiaotong University, 2018, 53(4): 820-828. doi: 10.3969/j.issn.0258-2724.2018.04.021
Citation: XU Xiaohui, XU Quan, SHI Jizhong, ZHANG Jiye, CHEN Zilong. Stability of Impulsive Disturbance Complex-Valued Cohen-Grossberg Neural Networks in a Complex Number Domain[J]. Journal of Southwest Jiaotong University, 2018, 53(4): 820-828. doi: 10.3969/j.issn.0258-2724.2018.04.021

脉冲干扰复数域Cohen-Grossberg神经网络的稳定性

doi: 10.3969/j.issn.0258-2724.2018.04.021
基金项目: 

四川省青年科技创新研究团队 2017TD0035

四川省青年科技创新研究团队 2016HH0010

国家自然科学基金资助项目 11402214

四川省教育厅自然科学重点项目 16ZB0163

四川省教育厅自然科学重点项目 17ZA0364

国家自然科学基金资助项目 11572264

四川省青年科技创新研究团队 2015TD0021

四川省青年科技创新研究团队 2017TD0026

浙江省自然科学基金资助项目 LY14E08006

详细信息
    作者简介:

    徐晓惠(1982-), 女, 副教授, 研究方向为复杂非线性关联大系统的稳定性分析与控制, E-mail:xhxu@163.com

    通讯作者:

    徐全(1982-), 男, 副教授, 博士, 研究方向为分数阶复杂关联系统的动态行为, E-mail:quanxnjd@sina.com

  • 中图分类号: TP183

Stability of Impulsive Disturbance Complex-Valued Cohen-Grossberg Neural Networks in a Complex Number Domain

  • 摘要: 为了分析脉冲干扰因素对复数域神经网络的影响,研究了一类具有脉冲干扰的变时滞复数域Cohen-Grossberg神经网络的平衡点的动态行为.在假定放大函数、自反馈函数以及激活函数定义在复数域的情况下,首先,利用M矩阵和同胚映射的相关原理,分析了该系统平衡点的存在性和唯一性;其次,利用向量Lyapunov函数法以及数学归纳法,研究了该系统平衡点的全局模指数稳定性,并建立的稳定性判据;最后,通过两个数值仿真算例验证了所得结论的实用性和正确性.仿真结果显示系统状态在0.5 s便可收敛到平衡状态.研究结果表明:时滞和脉冲干扰强度越大、放大函数越小,则神经元状态的指数收敛速度越慢.

     

  • 图 1  情况1下无脉冲干扰时系统(22)状态的模曲线

    Figure 1.  Module curves of neuro states of Eq.(22) without impulsive disturbances under case 1

    图 2  情况1脉冲干扰下系统(22)状态的模曲线

    Figure 2.  Module curves of neuro states of Eq.(22) with impulsive disturbances under case 1

    图 3  情况2下无脉冲干扰时系统(22)状态的模曲线

    Figure 3.  Module curves of neuro states of Eq.(22) without impulsive disturbances under case 2

    图 4  情况2下脉冲干扰下系统(22)状态的模曲线

    Figure 4.  Module curves of neuro states of Eq.(22) with impulsive disturbances under case 2

  • COHEN M A, GROSSBERG S. Absolute stability and global pattern formation and parallel memory storage by competitive neural networks[J]. IEEE Transactions on Systems, Man and Cybernetics Society, 1983, 13(5):815-825. http://www.sciencedirect.com/science/article/pii/S0166411508609139
    龙兰, 徐晓惠, 张继业.时滞Cohen-Grossberg神经网络的全局稳定性[J].西南交通大学学报, 2008, 43(3):381-386. doi: 10.3969/j.issn.0258-2724.2008.03.017

    LONG Lan, XU Xiaohui, ZHANG Jiye. Global stability analysis in Cohen-Grossberg neural networks with unbounded time delays[J]. Journal of Southwest Jiaotong University, 2008, 43(3):381-386. doi: 10.3969/j.issn.0258-2724.2008.03.017
    楼旭阳, 崔宝同.具反应扩散混合时滞Cohen-Grossberg神经网络的指数耗散性[J].控制理论与应用, 2008, 25(4):619-622. http://d.old.wanfangdata.com.cn/Periodical/kzllyyy200804005

    LOU Xuyang, CUI Baotong. Exponential dissipativity of Cohen-Grossberg neural networks with mixed delays and reaction-diffusion terms[J]. Control Theory & Applications, 2008, 25(4):619-622. http://d.old.wanfangdata.com.cn/Periodical/kzllyyy200804005
    ZHANG Jiye, SUDA Y, KOMINE H. Global exponential stability of Cohen-Grossberg neural networks with variable delays[J]. Physics Letters, 2005, 338(1):44-50. doi: 10.1016/j.physleta.2005.02.005
    JIAN Jigui, JIANG Wenlin. Lagrange exponential stability for fuzzy Cohen-Grossberg neural networks with time-varying delays[J]. Fuzzy Sets and Systems, 2015, 277(19):65-80. http://www.sciencedirect.com/science/article/pii/S0165011414005788
    SONG Qiankun, CAO Jinde. Impulsive effects on stability of fuzzy Cohen-Grossberg neural networks with time-varying delays[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2007, 37(3):733-741. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9a9d09539c52089133595eee4c5b7b6a
    施继忠, 徐晓惠, 张继业.扩散反应脉冲Cohen-Grossberg神经网络的鲁棒稳定性[J].西南交通大学学报, 2010, 45(4):596-602. doi: 10.3969/j.issn.0258-2724.2010.04.019

    SHI Jizhong, XU Xiaohui, ZHANG Jiye. Robust stability of impulsive Cohen-Grossberg neural networks with reaction-diffusion terms[J]. Journal of Southwest Jiaotong University, 2010, 45(4):596-602. doi: 10.3969/j.issn.0258-2724.2010.04.019
    LI Liangliang, JIAN Jigui. Exponential convergence and Lagrange stability for impulsive Cohen-Grossberg neural networks with time-varying delays[J]. Journal of Computational and Applied Mathematics, 2015, 277(5):23-35. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ca493a0458c84ea79e180a31964e6443
    HU Jin, WANG Jun. Global stability of complex-valued recurrent neural networks with time-delays[J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(6):853-864. doi: 10.1109/TNNLS.2012.2195028
    FANG Tao, SUN Jitao. Stability analysis of complex-valued impulsive system[J]. IET Control Theory and Applications, 2013, 7(8):1152-1159. doi: 10.1049/iet-cta.2013.0116
    ZHOU Bo, SONG Qiankun. Boundedness and complete stability of complex-valued neural networks with time delay[J]. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(8):1227-1238. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=488b27466aed8584d3b5bb65460421b7
    RAKKIYAPPAN R, CAO Jinde, VELMURUGAN G. Existence and uniform stability analysis of fractional-order complex-valued neural networks with time delays[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(1):84-97. doi: 10.1109/TNNLS.2014.2311099
    HU Jin, WANG Jun. Global exponential periodicity and stability of discrete-time complex-valued recurrent neural networks with time-delays[J]. Neural Networks, 2015, 66(6):119-130. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7528701d39e06dabc4c312a527744370
    SONG Qiankun, YAN Huan, ZHAO Zhenjiang, et al. Global exponential stability of complex-valued neural networks with both time-varying delays and impulsive effects[J]. Neural Networks, 2016, 79(7):108-116. http://europepmc.org/abstract/med/27136664
    徐晓惠, 张继业, 施继忠, 等.脉冲干扰时滞复值神经网络的稳定性分析[J].哈尔滨工业大学学报, 2016, 48(3):166-170. http://d.old.wanfangdata.com.cn/Periodical/hebgydxxb201603028

    XU Xiaohui, ZHANG Jiye, SHI Jizhong, et al. Stability analysis of delayed complex-valued neural networks with impulsive disturbances[J]. Journal of Harbin Institute of Technology, 2016, 48(3):166-170. http://d.old.wanfangdata.com.cn/Periodical/hebgydxxb201603028
    XU Xiaohui, ZHANG Jiye, SHI Jizhong. Dynamical behaviour analysis of delayed complex-valued neural networks with impulsive effect[J]. International Journal of Systems Science, 2017, 48(4):686-694. doi: 10.1080/00207721.2016.1206988
    WANG Limin, SONG Qiankun, LIU Yurong, et al. Global asymptotic stability of impulsive fractional-order complex-valued neural networks with time delay[J]. Neurocomputing, 2017, 243(14):49-59. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dd242b9305d2f131ee5b999434d13ed0
    ZHAO Zhenjiang, SONG Qiankun. Stability of complex-valued Cohen-Grossberg neural networks with time-varying delays[C]//13th International Symposium on Neural Networks.[S.l.]: Springer, 2016: 168-176.
    JIAN Jigui, WANG Peng. Lagrange α-exponential stability and α-exponential convergence for fractional-order complex-valued neural networks[J]. Neural Networks, 2017, 91(7):1-10. http://europepmc.org/abstract/MED/28458015
    HUANG Yujiao, ZHANG Huaguang, WANG Zhanshan. Multistability of complex-valued recurrent neural networks with real-imaginary-type activation functions[J]. Applied Mathematics and Computation, 2014, 229(4):187-200. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6542b8e16466ba911ed4f546887a7e80
  • 加载中
图(4)
计量
  • 文章访问数:  377
  • HTML全文浏览量:  178
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-13
  • 刊出日期:  2018-08-01

目录

    /

    返回文章
    返回