• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

高速道岔尖轨点云的复合拼接及数据处理优化

王培俊 吕东旭 陈鹏

王培俊, 吕东旭, 陈鹏. 高速道岔尖轨点云的复合拼接及数据处理优化[J]. 西南交通大学学报, 2018, 53(4): 806-812, 849. doi: 10.3969/j.issn.0258-2724.2018.04.019
引用本文: 王培俊, 吕东旭, 陈鹏. 高速道岔尖轨点云的复合拼接及数据处理优化[J]. 西南交通大学学报, 2018, 53(4): 806-812, 849. doi: 10.3969/j.issn.0258-2724.2018.04.019
WANG Peijun, LÜ Dongxu, CHEN Peng. Complex Point Cloud Registration and Optimized Data Processing for High-Speed Railway Turnout[J]. Journal of Southwest Jiaotong University, 2018, 53(4): 806-812, 849. doi: 10.3969/j.issn.0258-2724.2018.04.019
Citation: WANG Peijun, LÜ Dongxu, CHEN Peng. Complex Point Cloud Registration and Optimized Data Processing for High-Speed Railway Turnout[J]. Journal of Southwest Jiaotong University, 2018, 53(4): 806-812, 849. doi: 10.3969/j.issn.0258-2724.2018.04.019

高速道岔尖轨点云的复合拼接及数据处理优化

doi: 10.3969/j.issn.0258-2724.2018.04.019
基金项目: 

国家自然科学基金资助项目 51305368

详细信息
    作者简介:

    王培俊(1962-), 女, 教授, 博士, 研究方向为虚拟设计、数字化检测, E-mail:pjwang123@swjtu.edu.cn

    陈鹏(1981—), 男, 讲师, 博士, 研究方向为数字化制造与检测, E-mail:chenpeng@swjtu.edu.cn

  • 中图分类号: TP274

Complex Point Cloud Registration and Optimized Data Processing for High-Speed Railway Turnout

  • 摘要: 为实现高速铁路尖轨磨耗的高效检测,结合高速尖轨的检测需求及其几何特征,提出了基于距离编码器的复合拼接方法.该方法将距离信息融合到点云拼接中,提高了检测系统的自动化程度.在计算点特征直方图(point feature histograms,PFH)的过程中,引入OpenCL(open computing language)异构加速模型调整点云的数据结构,发挥GPU的并行处理优势获得了更快的数据处理速度.利用实际尖轨开展磨耗检测实验,证明了针对高速尖轨的结构光检测系统有效可行.经过点云拼接和点云扫描数据处理的优化,系统的整体检测效率获得了70%左右的提升.

     

  • 图 1  点云的传统拼接流程

    Figure 1.  General point cloud registration

    图 2  基于激光距离编码器复合拼接流程

    Figure 2.  Complex point cloud registration based on laser distance encoder

    图 3  目标点与k个邻近点之间的几何特性

    Figure 3.  Geometric characteristic between query points and their nearest k neighbors

    图 4  任意两点PaPb之间的相对位置关系

    Figure 4.  Relative position of two arbitrary points Pa and Pb

    图 5  OpenCL优化的PFH流程

    Figure 5.  Flowchart of OpenCL-accelerated PFH

    图 6  工作组大小不同时向量运算器的负载情况

    Figure 6.  Load percentage of VALU in different workgroup sizes

    图 7  多片原始尖轨点云相互重叠

    Figure 7.  Overlaps of multiple point clouds in the initial state

    图 8  扫描的第一片尖端点云与高速尖轨标准模型尖端对齐

    Figure 8.  Registration of the first scanned piece of point cloud of the switch rail to the CAD model on the starting points

    图 9  后续点云与标准模型精确配准结果

    Figure 9.  Accurate registration results of the rest point clouds to the designed model

    图 10  点云模型匹配误差分析

    Figure 10.  Point cloud alignment error analysis

    图 11  CPU和GPU的PFH计算对比

    Figure 11.  Comparison between CPU and GPU PFH computing

    表  1  匹配误差表

    Table  1.   Alignment errors

    mm
    点云序列标识点拼接法距离编码器拼接法
    0010.240.24
    0020.450.28
    0030.630.26
    0040.880.23
    下载: 导出CSV

    表  2  延伸方向误差表

    Table  2.   Errors along the switch rail

    mm
    点云序号延伸方向误差
    0010
    0020.23
    0030.61
    0040.89
    下载: 导出CSV

    表  3  OpenCL平台配置表

    Table  3.   Hardware and software of the OpenCL platform

    设备型号
    CPUAMD A8-7600B
    GPURadeonTM R7(核心自带)
    内存8G×2ddr 31600(双通道)
    操作系统Windows 1064 bit
    开发工具Visual Studio 2015
    PCL版本1.7.2 64 bit
    下载: 导出CSV

    表  4  系统优化前后耗时对比

    Table  4.   Comparison of time consumption between original and optimized methods

    s
    对比项目原方法改进方法
    系统标定33.1533.15
    喷涂显影剂34.06×434.06×4
    粘贴标识点30.00×30
    清除标识点10.00×30
    扫描6.45×46.45×4
    点云预处理5.005.00
    PFH计算50.006.41
    粗匹配10.4110.41
    精确匹配4.65×44.65×4
    总耗时399.20235.61
    速度提升/%69.43
    下载: 导出CSV
  • 王平, 陈嵘, 徐井芒, 等.高速铁路道岔系统理论与工程实践研究综述[J].西南交通大学学报, 2016, 51(2):357-372. doi: 10.3969/j.issn.0258-2724.2016.02.015

    WANG Ping, CHEN Rong, XU Jingmang, et al. Theories and engineering practices of high-speed railway turnout system:survey and review[J]. Journal of Southwest Jiaotong University, 2016, 51(2):357-372. doi: 10.3969/j.issn.0258-2724.2016.02.015
    NIETO M, CORTS A, BARANDIARAN J, et al. Single camera railways track profile inspection using an slice sampling-based particle filter. computer vision, imaging and computer graphics. theory and application[M]. Berlin:Springer, 2012:326-339.
    陈亮辉.采用结构光方法的三维轮廓测量[D].大连: 大连理工大学, 2006. http://cdmd.cnki.com.cn/Article/CDMD-10141-2006021219.htm
    ZHOU Y, ZHANG J, JIANG J, et al. Study and implementation on rail profile alignment algorithm based on 3D scanning data[C]//15th COTA international conference of transportation professionals. Reston: American Society of Civil Engineers, 2015: 1942-1951.
    王健, 胥燕军, 汪力, 等.机器视觉在钢轨磨耗检测中的应用研究[J].铁道标准设计, 2014, 58(9):36-39. http://d.old.wanfangdata.com.cn/Periodical/tdbzsj201409009

    WANG Jian, XU Yanjun, WANG Li, et al. The application research of machine vision in rail wear detection[J]. Railway Standard Design, 2014, 58(9):36-39. http://d.old.wanfangdata.com.cn/Periodical/tdbzsj201409009
    高伟杰.基于机器视觉的钢轨轮廓检测系统的研究[D].北京: 北京交通大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10004-1012355762.htm
    张宇宁, 谢琦.一种基于机器视觉的铁路道岔检测方法[J].计算机应用与软件, 2015(1):225-228. doi: 10.3969/j.issn.1000-386x.2015.01.057

    ZHANG Yuning, XIE Qi. A railway turnout detection method based on machine vision[J]. Computer Applications and Software, 2015(1):225-228. doi: 10.3969/j.issn.1000-386x.2015.01.057
    张广军.视觉测量[M].北京:科学出版社, 2008:175-205.
    中华人民共和国铁道部.铁运[2006] 177号部令铁路线路维修规则[S].中国铁道出版社, 2006.
    达飞鹏, 盖绍彦.光栅投影三维精密测量[M].北京:科学出版社, 2011:215-229.
    袁宝军, 邹小魁.铁路道岔尖轨轨高的测量基准研究[J].铁道标准设计, 2013, 57(4):5-8. http://d.old.wanfangdata.com.cn/Periodical/tdbzsj201304002

    YUAN Baojun, ZOU Xiaokui. Study on measuring basis for height of railway turnout switch rail[J]. Railway Standard Design, 2013, 57(4):5-8. http://d.old.wanfangdata.com.cn/Periodical/tdbzsj201304002
    朱德海.点云库PCL学习教程[M].北京:北京航空航天大学出版社, 2012:249-300.
    RUSU R B. Semantic 3D object maps for everyday manipulation in human living environments[J]. KüstlicheIntelligenz, 2010, 24(4):345-348. doi: 10.1007/s13218-010-0059-6
    WAHL E, HILLENBRAND U, HIRZINGER G. Surflet-pair-relation histograms: a statistical 3D-shape representation for rapid classification[C]//International Conference on 3-D Digital Imaging and Modeling, 2003.[S.l.]: IEEE, 2003: 474-481.
    RUSUR B, BLODOW N, BEETZ M. Fast point feature histograms (FPFH) for 3D registration[C]//IEEE International Conference onRobotics and Automation.[S.l.]: IEEE, 2009: 3212-3217.
    MUNSHI A, GASTER B, MATTSON T G. OpenCL programming guide[M].[S.l.]: Science Press, 2012: 247-281.
    SCARPINO M. OpenCL in action:how to accelerate graphics and computation[M]. Shelter Island:Manning Publication, 2012:16-94.
    Advanced Micro Devices Inc. AMD OpenCL programming user guide[DB/OL].[2016-01-22]. http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_OpenCL_Programming_User_Guide2.pdf.
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  458
  • HTML全文浏览量:  170
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-11
  • 刊出日期:  2018-08-01

目录

    /

    返回文章
    返回