Flutter Mechanism of Flat Box Girder under Different Attack Angles
-
摘要: 静风效应产生的附加风攻角对大跨度桥梁的颤振性能有着重要的影响,因此研究不同风攻角下主梁的颤振机理有重要意义.以扁平箱梁为研究对象,基于不同攻角下的颤振导数,采用双模态耦合解法掌握了颤振性能,继而通过分析气动阻尼、相位差和气动力幅值的变化研究了颤振机理.研究结果表明:在0°和3°攻角下,非耦合气动力为扁平箱梁断面提供了较大的正阻尼,颤振临界风速较高;在5°攻角下,非耦合气动力产生的正阻尼显著减小,使得耦合气动力产生的负阻尼迅速增加,导致颤振临界风速显著降低;耦合运动相位角增大是大攻角下气动负阻尼增加的主要原因,耦合气动力振幅则对颤振风速没有影响;此颤振机理表明大攻角下扁平箱梁颤振性能的弱化是由耦合效应增大引起,而非扭转运动产生的气动负阻尼引起.Abstract: The effect of an additional attack angle induced by aerostatic force on flutter instability of long span bridges is significant, thus the study regarding the flutter mechanisms of a flat box girder under different attack angles is important and necessary. Flutter derivatives have been identified using forced vibration devices and the critical velocities have been calculated based on the bimodal coupled flutter analysis method. Based on this analysis scheme, the roles of aerodynamic damping, phase lag, and modal frequency, which aid to better understand the flutter mechanism of the girder under different attack angles, are intensively analysed. The study results indicate that uncoupled aerodynamic forces provide energy to enhance the stability of the systems that result in a higher critical flutter speed at 0° and 3° compared with the speed at 5° The negative aerodynamic damping induced by the coupled force increases rapidly while the positive damping provided by the non-coupled force decreases significantly at 5° attack angle, which results in the weakened flutter performance. The phase lag of coupled flutter is the primary parameter for increasing the negative damping, and the effect of aerodynamic amplitude is negligible. The mechanism indicates that the weakening flutter performance of a flat box girder at large attack angle is increased primarily owing to coupled motion, not induced by negative damping generated in the torsional flutter.
-
Key words:
- flat box girder /
- flutter mechanism /
- flutter derivatives /
- aerodynamic damping /
- flutter mode
-
表 1 计算参数和试验参数
Table 1. Parameters for calculation and tests
α1 case m/kg I/(kg·m2) ωα0/(rad·s-1) ωh0/(rad·s-1) ωα0/ωh0 0° 1 10.56 0.327 18.85 10.21 1.85 2 9.61 0.325 19.44 11.00 1.77 3 10.56 0.372 17.67 10.21 1.73 3° 1 10.56 0.327 18.85 10.21 1.85 2 9.61 0.325 19.44 11.00 1.77 3 10.56 0.372 17.67 10.21 1.73 5° 1 10.56 0.327 18.85 10.21 1.85 2 9.61 0.325 19.44 11.00 1.77 3 10.56 0.372 17.67 10.21 1.73 -
庞加斌, 宋锦忠, 林志兴.四渡河峡谷大桥桥位风的湍流特性实测分析[J].中国公路学报, 2010, 23(3):42-47. doi: 10.3969/j.issn.1001-7372.2010.03.007PANG Jiabin, SONG Jinzhong, LIN Zhixing. Field measurement analysis of wind turbulence characteristics of Sidu River valley bridge site[J]. China Journal of Highway and Transport, 2010, 23(3):42-47. doi: 10.3969/j.issn.1001-7372.2010.03.007 黄国庆, 彭留留, 廖海黎, 等.普立特大桥桥位处山区风特性实测研究[J].西南交通大学学报, 2016, 51(2):349-356. doi: 10.3969/j.issn.0258-2724.2016.02.014HUANG Guoqing, PENG Liuliu, LIAO Haili, et al. Field measurement study on wind characteristics at Puli great bridge site in mountainous area[J]. Journal of Southwest Jiaotong University, 2016, 51(2):349-356. doi: 10.3969/j.issn.0258-2724.2016.02.014 于舰涵, 李明水, 廖海黎.山区地形对桥位风场影响的数值模拟[J].西南交通大学学报, 2016, 51(4):654-662. doi: 10.3969/j.issn.0258-2724.2016.04.008YU Jianhan, LI Mingshui, LIAO Haili. Numerical simulation of effect of mountainous topography on wind field at bridge site[J]. Journal of Southwest Jiaotong University, 2016, 51(4):654-662. doi: 10.3969/j.issn.0258-2724.2016.04.008 李永乐, 遆子龙, 汪斌, 等.山区Y形河口附近桥址区地形风特性数值模拟研究[J].西南交通大学学报, 2016, 51(2):341-348. doi: 10.3969/j.issn.0258-2724.2016.02.013LI Yongle, TI Zilong, WANG Bin, et al. Numerical simulation of wind characteristics over bridge site near Y-shaped river junction in mountainous area[J]. Journal of Southwest Jiaotong University, 2016, 51(2):341-348. doi: 10.3969/j.issn.0258-2724.2016.02.013 潘晶晶.基于实测台风过程的风场特征分析及大跨桥梁风致行为初步研究[D].上海: 同济大学, 2016. 朱乐东, 朱青, 郭震山.风致静力扭角对桥梁颤振性能影响的节段模型试验研究[J].振动与冲击, 2011, 23(5):23-26. doi: 10.3969/j.issn.1000-3835.2011.05.005ZHU Ledong, ZHU Qing, GUO Zhenshan. Effect of wind-induced static torsional angle on flutter performance of bridges via sectional model test[J]. Journal of Vibration and Shock, 2011, 23(5):23-26. doi: 10.3969/j.issn.1000-3835.2011.05.005 张宏杰, 朱乐东.附加风攻角对1400 m斜拉桥颤振分析结果的影响[J].振动与冲击, 2013, 25(17):95-99. doi: 10.3969/j.issn.1000-3835.2013.17.018ZHANG Hongjie, ZHU Ledong. Influence of additional attack angle on flutter performance of a 1400 m long cable bridge[J]. Journal of Vibration and Shock, 2013, 25(17):95-99. doi: 10.3969/j.issn.1000-3835.2013.17.018 欧阳克俭, 陈政清.附加攻角效应对颤振稳定性能影响[J].振动与冲击, 2015, 27(2):45-49. http://d.old.wanfangdata.com.cn/Periodical/zdycj201502009OUYANG Kejian, CHEN Zhenqing. Influence of static wind additive attack angle on flutter performance of bridge[J]. Journal of Vibration and Shock, 2015, 27(2):45-49. http://d.old.wanfangdata.com.cn/Periodical/zdycj201502009 熊龙, 廖海黎, 马存明, 等.静风效应对千米级悬索桥颤振的影响[J].华中科技大学学报, 2016, 44(12):44-49. http://d.old.wanfangdata.com.cn/Periodical/hzlgdxxb201612008XIONG Long, LIAO Haili, MA Cunming, et al. Study on aerostatic effects on flutter of kilometer level suspension bridge[J]. Journal of Huazhong University of Science and Technology, 2016, 44(12):44-49. http://d.old.wanfangdata.com.cn/Periodical/hzlgdxxb201612008 MATSUMOTO M, SHIRATO H, HIRAI S. Torsional flutter mechanism of 2-D H-shaped cylinders and effects of flow turbulence[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 41(1/2/3):687-698. http://www.sciencedirect.com/science/article/pii/016761059290480X MATSUMOTO M, OKUBO K, ITO Y, et al. The complex branch characteristics of coupled flutter[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96:1843-1855. doi: 10.1016/j.jweia.2008.02.011 MATSUMOTO M. Aerodynamic damping of prisms[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1996, 59:159-175. doi: 10.1016/0167-6105(96)00005-0 MATSUMOTO M, SHIRATO H, MIZUNO K, et al. Flutter characteristics of H-shaped cylinders with various side ratios and comparisons with characteristics of rectangular cylinders[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96:963-970. doi: 10.1016/j.jweia.2007.06.022 DAITO, MATSUMOTO M, ARAKI K. Torsional flutter mechanism of two edge girders for long span cable stayed bridge[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90:2127-2141. doi: 10.1016/S0167-6105(02)00329-X 杨詠昕, 葛耀君, 项海帆.大跨度桥梁典型断面颤振机理[J].同济大学学报, 2006, 34(4):455-460. doi: 10.3321/j.issn:0253-374X.2006.04.006YANG Yongxin, GE Yaojun, XIANG Haifan. Flutter mechanism of representative sections for long-span bridge[J]. Journal of Tongji University, 2006, 34(4):455-460. doi: 10.3321/j.issn:0253-374X.2006.04.006 杨詠昕, 葛耀君, 项海帆.大跨度桥梁中央开槽颤振控制效果和机理研究[J].土木工程学报, 2006, 39(7):74-80. doi: 10.3321/j.issn:1000-131X.2006.07.013YANG Yongxin, GE Yaojun, XIANG Haifan. Flutter control effect and mechanism of central-slotting for long-span bridge[J]. China Civil Engineering Journal, 2006, 39(7):74-80. doi: 10.3321/j.issn:1000-131X.2006.07.013 杨詠昕, 葛耀君, 项海帆.平板断面扭弯耦合颤振机理研究[J].工程力学, 2006, 23(12):1-8. doi: 10.3969/j.issn.1000-4750.2006.12.001YANG Yongxin, GE Yaojun, XIANG Haifan. Research on the coupled bending-torsional flutter mechanism for thin plate sections[J]. Engineering Mechanics, 2006, 23(12):1-8. doi: 10.3969/j.issn.1000-4750.2006.12.001 丁泉顺, 张鹏飞, 朱乐东.二自由度平板气动耦合颤振的机理研究[J].力学季刊, 2010, 31(4):590-596. http://d.old.wanfangdata.com.cn/Periodical/lxjk201004019DING Quanshun, ZHANG Pengfei, ZHU Ledong. On mechanism of aerodynamically coupling flutter roe two-degree-of-freedom plate section[J]. Chinese Quarterly of mechanics, 2010, 31(4):590-596. http://d.old.wanfangdata.com.cn/Periodical/lxjk201004019 CHEN X, KAREEM A. Revisiting multimode coupled bridge flutter:some new insights[J]. Journal of Engineering Mechanics, 2006, 132(10):1115-1123. doi: 10.1061/(ASCE)0733-9399(2006)132:10(1115) CHEN X. Improved understanding of bimodal coupled bridge flutter based on closed form solutions[J]. Journal of Structural Engineering, 2007, 133(1):22-31. doi: 10.1061/(ASCE)0733-9445(2007)133:1(22) CHEN X, KAREEM A. Identification of critical structural modes and flutter derivatives for predicting coupled bridge flutter[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96:1856-1870. doi: 10.1016/j.jweia.2008.02.025