• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

多目标U型拆卸线平衡问题的Pareto蚁群遗传算法

张则强 汪开普 朱立夏 程文明

张则强, 汪开普, 朱立夏, 程文明. 多目标U型拆卸线平衡问题的Pareto蚁群遗传算法[J]. 西南交通大学学报, 2018, 53(3): 628-637, 660. doi: 10.3969/j.issn.0258-2724.2018.03.026
引用本文: 张则强, 汪开普, 朱立夏, 程文明. 多目标U型拆卸线平衡问题的Pareto蚁群遗传算法[J]. 西南交通大学学报, 2018, 53(3): 628-637, 660. doi: 10.3969/j.issn.0258-2724.2018.03.026
ZHANG Zeqiang, WANG Kaipu, ZHU Lixia, CHENG Wenming. Pareto Hybrid Ant Colony and Genetic Algorithm for Multi-Objective U-Shaped Disassembly Line Balancing Problem[J]. Journal of Southwest Jiaotong University, 2018, 53(3): 628-637, 660. doi: 10.3969/j.issn.0258-2724.2018.03.026
Citation: ZHANG Zeqiang, WANG Kaipu, ZHU Lixia, CHENG Wenming. Pareto Hybrid Ant Colony and Genetic Algorithm for Multi-Objective U-Shaped Disassembly Line Balancing Problem[J]. Journal of Southwest Jiaotong University, 2018, 53(3): 628-637, 660. doi: 10.3969/j.issn.0258-2724.2018.03.026

多目标U型拆卸线平衡问题的Pareto蚁群遗传算法

doi: 10.3969/j.issn.0258-2724.2018.03.026
基金项目: 

四川省应用基础研究计划资助项目 2014JY0232

国家自然科学基金资助项目 51205328

教育部人文社会科学研究青年基金资助项目 12YJCZH296

国家自然科学基金资助项目 51405403

详细信息
    作者简介:

    张则强(1978-), 男, 教授, 博士, 博士生导师, 研究方向为制造系统与智能优化, 电话:18782000996, E-mail:zzq_22@163.com

  • 中图分类号: TH165;TP301.6

Pareto Hybrid Ant Colony and Genetic Algorithm for Multi-Objective U-Shaped Disassembly Line Balancing Problem

  • 摘要: 针对传统方法求解多目标U型拆卸线平衡问题的不足,提出了一种基于Pareto解集的多目标蚁群遗传算法.在构造初始解阶段,以协同考虑最大作业时间、最小拆卸成本差作为蚂蚁的启发式信息;通过蚁群算法搜索可行拆卸序列,并根据多目标之间的支配关系得到Pareto解集;将蚁群算法的Pareto非劣解作为遗传操作的个体,进而将遗传操作的结果正反馈于最优拆卸路径上信息素的积累,并采用拥挤距离作为蚂蚁全局信息素更新策略,可以平衡多目标对信息素的影响,使算法快速获得较优解.将所提算法应用于52项拆卸任务算例和某打印机拆卸线实例,在算例验证中,通过对比Pareto蚁群算法,所提算法求得的8个非劣解在3个评价指标上性能分别提高了50.43%、3.25%、14.10%,在实例应用中所提算法求得8种可选平衡方案,从而验证了所提算法的有效性、优越性和实用性.

     

  • 图 1  直线型拆卸线示意

    Figure 1.  Schematic diagram of linear disassembly line

    图 2  U型拆卸线示意

    Figure 2.  Schematic diagram of U-shaped disassembly line

    图 3  交叉操作示意

    Figure 3.  Schematic diagram of crossover operation

    图 4  变异操作示意

    Figure 4.  Schematic diagram of mutation operation

    图 5  ACGA非劣解在f2f3f4上空间分布

    注:●表示方案

    Figure 5.  Non-inferior solutions spatial distribution of f2, f3, f4

    表  1  文献[16]Pareto ACO求解结果

    Table  1.   Solution results of Pareto ACO in literature [16]

    编号 Fidle Fsmooth Fcost
    1 0.057 9 0.859 4 150.546
    2 0.057 9 0.928 5 159.768
    3 0.057 9 0.863 2 152.412
    4 0.175 7 0.968 1 170.357
    5 0.175 7 0.974 7 173.388
    6 0.175 7 0.945 1 167.416
    下载: 导出CSV

    表  2  所提Pareto ACGA求解平衡方案

    Table  2.   Balance schemes of proposed Pareto ACGA

    编号 任务分配方案 Fidle Fsmooth Fcost
    1 {-39, -5, -30, -20, -43}→{-9, -6, -26}→{-33, 36, 37, 21, 29, 18}→{32, -2, -52, -42, -19, -27, 28, 47, -17, 15}→{3, 1, 12, -10, 35}→24, 16, 14, -45, 4, 31, 25, 11, -41, 23}→{-44, 34, 46, 22, 49, 51, -48, -50, -38, 8, 7, 40, 13} 0.057 9 0.982 3 142.224
    2 {4, 31, 25, -5}→{-26, -30, -9}→{-33, -20, 36, 21, 29}→{3, 1, 12, -6}→{-18, -43, -42, 47, 46, 34, 22, 35, 24}→{7, 37, 28, 32, -19, -27, -10, -41, -2, 49}→{51, 44, 8, 15, 40, 14, 52, -17, -39, -38, -23, -45, -16, 50, 48, 11, 13} 0.057 9 0.915 3 130.332
    3 {-19, -27, -44, 37, 42, 21, 4, 31}→{25, 18, 29, -5}→{-9, -33, -26}→{-30, -6, -20, 36, 52, 45}→{3, 1, 12, 2, -16, -39, 35}→{24, 34, 22, -10, 49, 51, -48, -17, 28}→{-43, 47, 32, -13, -38, -23, 40, 8, 15, -11, -14, -7, -41, -50, -46} 0.057 9 0.923 4 135.648
    4 {-9, -33, -26, 37}→{4, 31, 25, -5}→{-30, -20, -17, -2, -6, 29}→{36, 18, -10, -21, -13, -45, -39, -42, -44}→{3, 1, -43, 12, 35}→{24, -48, 32, -19, -52, -27, 34, 28, 8, 15, -41}→{22, 49, 51, -38, -23, -11, -46, -50, -47, -7, -16, -14, -40} 0.057 9 0.932 1 137.262
    5 {-20, -52, -5, -9}→{-30, -26, -6, 37}→{-43, -21, -18, -42, -33, 36}→{3, 1, -10, 12, 35}→{4, 32, 28, 34, -17, 22, 24, 31, 8}→{25, 29, -19, -27, 15, -38, -23}→{-2, 49, 51, 16, 47, -48, -50, -44, -41, -45, -11, 7, 13, 40, 46, 14, 39} 0.057 9 0.964 6 140.766
    6 {-20, -43, -52, -9, -6}→{-5, -26, -30}→{-33, 36, 37, 21, 29, 18}→{42, -19, -27, 4, 3, 1}→{31, 25, 12, 47, -17, -48}→{32, 35, 24, -44, 14, 28, 15, 34, 22, -10}→{49, 51, 8, -38, -45, -23, -50, -13, -2, -7, -11, -41, -40, -39, -46, -16} 0.057 9 0.941 3 140.304
    7 {-44, -5, -21, -26}→{-9, -30, -6, 29}→{32, -20, -10, -33, 36, 42}→{18, -2, 3, 1, 12}→{34, 22, 35, -52, 24, 7, 4, -13, -17, 28}→{31, 25, -43, -8, -48, -19, -45, -27}→{37, 49, -38, 51, 40, -23, -39, -46, -50, -47, -11, -15, -14, -41, -16} 0.057 9 0.976 1 141.924
    8 {-45, -5, -9, -19, -52, -41}→{-20, -33, 36, 26}→{-30, -6, -21, -18, 3}→{1, 12, 35, 24, 28}→{34, -27, 22, -43, -48, -50, -2, 7, 47, 8, -40, 46}→{42, 37, -10, -16, 29, -17, -32, 4, 15, -51}→{31, 25, 49, 44, 13, -38, -23, -11, -14, -39}55, 0] 0.057 9 0.990 0 146.994
    下载: 导出CSV

    表  3  拆卸任务相关信息表

    Table  3.   Related data information of printer disassembly tasks

    编号 零件名称 t/s U/(元·s-1) r P
    1 电源线 3 0.002 9 -x 0
    2 硒鼓 3 0.002 9 +z 0
    3 搓纸轮 2 0.002 7 +z 0
    4 分页器螺钉 16 0.005 5 -z 0
    5 分页器 5 0.003 3 -z 4
    6 进纸盘 40 0.010 3 +x 0
    7 前面板 18 0.005 9 +x 9, 11
    8 左侧板螺钉 8 0.003 9 -x 0
    9 左侧板 33 0.008 9 -y 8
    10 右侧板螺钉 8 0.003 9 -x 0
    11 右侧板 13 0.004 9 -y 10
    12 拉杆 5 0.003 3 +y 0
    13 顶盖螺钉 16 0.005 5 +z 0
    14 顶盖 10 0.004 3 -x 9, 11, 12
    15 组排线 18 0.005 9 -y 9
    16 加热组件螺钉 24 0.007 1 +z 14
    17 加热组件 4 0.003 1 +z 16
    18 后盖板螺钉 8 0.003 9 -x 0
    19 后盖板 2 0.002 7 -x 18
    20 电源板螺钉1 16 0.005 5 -x 9
    21 电源板螺钉2 32 0.008 7 -y 9
    22 电源板 15 0.005 3 -y 15, 20, 21, 24, 25, 28
    23 塑料挡片 6 0.003 5 -y 15
    24 带排线1 2 0.002 7 -y 9
    25 地线 2 0.002 7 +z 9
    26 拾纸组件螺钉1 16 0.005 5 -x 19
    27 拾纸组件螺钉2 32 0.008 7 +y 0
    28 拾纸组件排线 4 0.003 1 +y 9
    29 拾纸组件 15 0.005 3 -x 25, 26, 27, 28
    30 带排线2 2 0.002 7 +y 11
    31 齿轮防尘罩螺钉 40 0.010 3 +y 11
    32 齿轮防尘罩 3 0.002 9 +y 30, 31
    33 继电器螺钉 8 0.003 9 +y 11
    34 继电器 2 0.002 7 +y 33
    35 格式化板螺钉 24 0.007 1 +y 11
    36 格式化板 2 0.002 7 +y 35
    37 传动齿轮组 15 0.005 3 +y 32
    38 弹簧组 2 0.002 7 +y 32
    39 ECU外罩螺钉 32 0.008 7 +z 7
    40 ECU外罩 36 0.009 5 +z 39
    41 基座螺钉 32 0.008 7 -z 0
    42 基座 4 0.003 1 -z 27, 41
    43 发动机螺钉 16 0.005 5 -y 40
    44 发动机 3 0.002 9 -y 43, 48
    45 右内侧板螺钉 8 0.003 9 +y 11
    46 右内侧板 2 0.002 7 +y 43, 45
    47 激光器电路板螺钉 8 0.003 9 +z 40
    48 激光器电路板排线1 2 0.002 7 -y 40
    49 激光器电路板排线2 2 0.002 7 +z 40
    50 激光器电路板 10 0.004 3 +z 24, 30, 47, 48, 49
    51 激光器螺钉 32 0.008 7 +z 50
    52 激光器带排线 2 0.002 7 -y 40
    53 激光器 2 0.002 7 +z 49, 51, 52
    54 左内侧板螺钉 8 0.003 9 -y 22
    55 左内侧板 2 0.002 7 -y 54
    下载: 导出CSV

    表  4  Pareto ACGA非劣解的平衡方案

    Table  4.   Non-inferior solution balance schemes of Pareto ACGA

    编号 任务分配方案 f1 f2 f3 f4
    1 {-55, -53, 27, 41, -51, -6}→{4, -29, -37, -26, -13, -52, -17, -16, -14, -38, -34, -46, -19, -3, -2, -44, -23}→{-43, -36, -35, -32, -31, 8, 1, 9}→{21, 15, 20, 24, 25, 28, 12, 22, 54, 10, 18, 11, 30}→{7, 39, 40, 49, 48, 42, 45, 33, 47, 5, 50} 5 594 6.655 5 32
    2 {2, 27, 41, 4, 13, -29, -26, 8}→{6, 9, 15, 20, -37, 10}→{21, 11, 31, 35, 7, 33}→{39, 40, 1, 43, 45, 47, 18, 23, 12, 5, -17}→{-16, -14, -44, 52, 42, 28, 25, 3, 19, 24, 22, 54, 34, 30, 32, 38, 36, 46, 48, 49, 50, 51, 53, 55} 5 586 6.887 5 33
    3 {-53, -1, 27, 6, 41, -51}→{4, -50, 8, 9, 21, 15, 20}→{-29, -23, -26, 10, 18, -47, -17, -16, -37, -13, 11, -14}→{45, 35, 33, 31, 7, 39}→{40, 43, 42, 28, 12, 5, -44, -2, 25, 3, 19, 24, 22, 54, 48, 30, 32, 38, 34, 36, 46, 49, 52, 55} 5 678 6.684 5 29
    4 {1, 6, 27, 41, -37, -13}→{4, -29, -26, 10, 18, 12, 5, 42, 11, 31}→{35, 45, 33, -23, 8, 9, 21, 15}→{20, 7, 39, 40, 43, 47, 19, -44, 14}→{16, 17, 28, 2, 25, 3, 24, 22, 54, 48, 30, 32, 36, 34, 38, 46, 49, 50, 51, -53, -52, -55} 5 610 6.916 5 26
    5 {-53, -1, -6, 27, 41, -51}→{-37, -23, -13, -50, -47, 10, -5, -29, -26, -4, 11, 45}→{31, 35, 33, 12, -44, 18, 8, 9}→{21, 15, 7, 20, 14, 39}→{40, 43, 16, 17, 42, 28, 2, 49, 3, 19, 24, 25, 22, 54, 48, 30, 32, 36, 34, 38, 46, 52, 55} 5 718 6.423 5 28
    6 {-36, -13, 4, -29, -35, 41, 27}→{6, -26, 8, 9, 21, 28}→{-37, 20, 15, 23, 5, 12, 42, -17, -16, -14, 18, 10, -44, 11}→{31, 7, 33, 39, 40}→{43, 45, 47, 2, 1, 19, 3, 24, 25, 22, 54, 34, 30, 32, -53, -51, -50, -55, -38, -46, -48, -49, -52} 5 534 6.539 5 39
    7 {-53, -51, 41, 27, 6}→{-37, -29, -26, -13, 4, -50, -23, -47, 18, 10, 8}→{9, 15, 11, 31, 21}→{35, 7, 45, 39, 40, 43}→{20, 33, 12, 5, -17, -16, -14, -42, -2, -44, -52, 28, 1, 34, 3, 19, 24, 25, 22, 54, 55, 30, 32, 48, 36, 38, 46, 49} 5 628 6.191 5 36
    8 {10, 6, 27, 41, -37, 8}→{9, 21, 15, 20, 18, 23, 12, 13}→{-29, -26, 4, 11, 14, 31, 35}→{16, 33, 45, 5, 7, 42, 39, 40}→{43, 47, 17, -44, -2, 28, 36, 1, 49, 3, 19, 24, 25, 22, 52, 54, 55, 30, 32, 38, 34, 46, 48, 50, 51, 53} 5 506 6.916 5 32
    下载: 导出CSV
  • 国务院.国务院关于印发《中国制造2025》的通知[J].中华人民共和国国务院公报, 2015(16):10-26. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQMP201503004.htm
    GUNGOR A, GUPTA S M. Disassembly line in product recovery[J]. International Journal of Production Research, 2002, 40(11):2569-2589. doi: 10.1080/00207540210135622
    AVIKAL S, MISHRA P K, JAIN R. A Fuzzy AHP and PROMETHEE method-based heuristic for disassembly line balancing problems[J]. International Journal of Production Research, 2014, 52(5):1306-1317. doi: 10.1080/00207543.2013.831999
    BENTAHA M L, BATTAIA O, DOLGUI A. Lagrangian relaxation for stochastic disassembly line balancing problem[J]. Procedia CIRP, 2014(17):56-60. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0214534488
    MCGOVERN S M, GUPTA S M. A balancing method and genetic algorithm for disassembly line balancing[J]. European Journal of Operational Research, 2007, 179(3):692-708. doi: 10.1016/j.ejor.2005.03.055
    朱兴涛, 张则强, 朱勋梦, 等.求解多目标拆卸线平衡问题的一种蚁群算法[J].中国机械工程, 2014, 25(8):1075-1079. doi: 10.3969/j.issn.1004-132X.2014.08.016

    ZHU Xingtao, ZHANG Zeqaing, ZHU Xunmeng, et al. An ant colony optimization algorithm for multi-objective disassembly line balancing problem[J]. China Mechanical Engineering, 2014, 25(8):1075-1079. doi: 10.3969/j.issn.1004-132X.2014.08.016
    MCGOVERN S M, GUPTA S M. Ant colony optimization for disassembly sequencing with multiple objectives[J]. The International Journal of Advanced Manufacturing Technology, 2006, 30(5):481-496. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f857d98cf5114ed7c4cd3ae30371f41e
    KALAYCI C B, GUPTA S M. A particle swarm optimization algorithm for solving disassembly line balancing problem[C]//Proceedings for the Northeast Region Decision Sciences Institute. [S. l.]: Newport, 2012: 347-357.
    KALAYCI C B, GUPTA S M, NAKASHIMA K. Bees colony intelligence in solving disassembly line balancing problem[C]//Proceedings of the 2011 Asian Conference of Management Science and Applications. Sanya: [S. n.], 2011: 34-41.
    张则强, 胡扬, 陈冲.求解拆卸线平衡问题的改进人工蜂群算法[J].西南交通大学学报, 2016, 51(5):910-917. doi: 10.3969/j.issn.0258-2724.2016.05.013

    ZHANG Zeqiang, HU Yang, CHEN Chong. An improved artificial bee colony algorithm for disassembly line balancing problem[J]. Journal of Southwest Jiaotong University, 2016, 51(5):910-917. doi: 10.3969/j.issn.0258-2724.2016.05.013
    KALAYCI C B, POLAT O, GUPTA S M. A variable neighbourhood search algorithm for disassembly lines[J]. Journal of Manufacturing Technology Management, 2015, 26(2):182-194. doi: 10.1108/JMTM-11-2013-0168
    TUNCEL E, ZEID A, KAMARTHI S. Solving large scale disassembly line balancing problem with uncertainty using reinforcement learning[J]. Journal of Intelligent Manufacturing, 2014, 25(4):647-659. doi: 10.1007/s10845-012-0711-0
    KALAYCI C B, GUPTA S M. Tabu search for disassembly line balancing with multiple objectives[C]//Proceedings of the 41st International Conference on Computers & Industrial Engineering. Los Angeles: [S. n.], 2011: 477-482.
    KALAYCI C B, GUPTA S M, NAKASHIMA K. A simulated annealing algorithm for balancing a disassembly line[C]//Proceedings of the Seventh International Symposium on Environmentally Conscious Design and Inverse Manufacturing. Netherlands: [S. n.], 2011: 713-718.
    METE S, CIL Z A, AGPAK K, et al. A solution approach based on beam search algorithm for disassembly line balancing problem[J]. Journal of Manufacturing Systems, 2016, 41:188-200. doi: 10.1016/j.jmsy.2016.09.002
    丁力平, 谭建荣, 冯毅雄, 等.基于Pareto蚁群算法的拆卸线平衡多目标优化[J].计算机集成制造系统, 2009, 15(7):1406-1413. http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt200907022

    DING Liping, TAN Jianrong, FENG Yixiong, et al. Multiobjective optimization for disassembly line balancing based on Pareto ant colony algorithm[J]. Computer Integrated Manufacturing Systems, 2009, 15(7):1406-1413, 1429. http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt200907022
    ALAVIDOOST M, BABAZADEH H, SAYYARI S. An interactive fuzzy programming approach for bi-objective straight and U-shaped assembly line balancing problem[J]. Applied Soft Computing, 2016, 40:221-235. doi: 10.1016/j.asoc.2015.11.025
    ALAVIDOOST M H, ZARANDI M H, TARIMORADI M, et al. Modified genetic algorithm for simple straight and U-shaped assembly line balancing with fuzzy processing times[J]. Journal of Intelligent Manufacturing, 2017, 28(2):313-336. doi: 10.1007/s10845-014-0978-4
    AGRAWAL S, TIWARI M K. A collaborative ant colony algorithm to stochastic mixed-model U-shaped disassembly line balancing and sequencing problem[J]. International Journal of Production Research, 2008, 46(6):1405-1429. doi: 10.1080/00207540600943985
    李明, 张则强, 胡扬. U型布局的拆卸线平衡问题及其求解算法研究[J].现代制造工程, 2015(7):7-12. doi: 10.3969/j.issn.1671-3133.2015.07.003

    LI Ming, ZHANG Zeqaing, HU Yang. Research on U-shaped disassembly line balancing problem and solving algorithm[J]. Modern Manufacturing Engineering, 2015(7):7-12. doi: 10.3969/j.issn.1671-3133.2015.07.003
    张则强, 胡俊逸, 程文明.第Ⅰ类双边装配线平衡问题的改进蚁群算法[J].西南交通大学学报, 2013, 48(4):724-730. doi: 10.3969/j.issn.0258-2724.2013.04.020

    ZHANG Zeqiang, HU Junyi, CHENG Wenming. Improved ant colony algorithms for two-sided assembly line balancing problem of type Ⅰ[J]. Journal of Southwest Jiaotong University, 2013, 48(4):724-730. doi: 10.3969/j.issn.0258-2724.2013.04.020
    KUCUKKOC I, ZHANG D Z. Integrating ant colony and genetic algorithms in the balancing and scheduling of complex assembly lines[J]. The International Journal of Advanced Manufacturing Technology, 2016, 82(1/2/3/4):265-285. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c6d8fd8411099bdee157fb11d60a377b
    DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197. doi: 10.1109/4235.996017
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  497
  • HTML全文浏览量:  282
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-02
  • 刊出日期:  2018-06-01

目录

    /

    返回文章
    返回