Numerical Study of Flow Characteristics Around Square Cylinder at High Reynolds Number
-
摘要: 为研究高雷诺数为22 000下方柱周围流场形态及气动力特性,基于开源计算流体动力学(computational fluid dynamic,CFD)软件OpenFoam平台,采用基于动态亚格子模型的大涡模拟(large eddy simulation,LES)方法,对均匀来流作用下的方柱绕流进行了三维数值模拟.首先,通过对基于时间积分的平均积分分量的比较,验证了本数值计算的准确性;其次,深入分析了方柱周围及其尾流区的流场结构,给出了流场结构的平均和湍流特征,并在此基础上,研究了其气动力特性;最后,分析了两种长径比下表面压力的展向空间相关性.研究结果表明:雷诺数为22 000下方柱尾流区回转长度为1.37倍方柱宽度,Strouhal数为0.121,脉动升力系数为1.40;展向长度取8倍方柱宽度可更准确地获得周围湍流特性.Abstract: Three-dimensional large eddy simulations (LES) were performed at high Reynolds numbers (Re=22 000) and using the dynamic Smagorinsky sub-grid model to investigate uniform flow over a square cylinder. Meshing of the model was performed using Open Foam-an open-source computational tool. Mean integral quantities were compared against existing experimental and numerical results to validate the proposed numerical method. Subsequently, the flow structure around and aerodynamic forces acting on the cylinder were analysed to perform an in-depth investigation of mean-and turbulent-flow characteristics. Lastly, the influence of the grid system around the cylinder and span-wise length on the flow structure and spatial correlation were investigated via comparison between different cases. Results demonstrate that the recirculation length in the wake approximately measured 1.37D (width of square), while the Strouhal number and RMS value of the lift coefficient are 0.121 and 1.40, respectively. In addition, domain length along the span-wise should be equal to 8D in order to obtain clear turbulent-flow characteristics.
-
表 1 平均积分分量对比表
Table 1. Comparison of integral parameters
算例 Re/×103 St CD 阻力系数脉动值C'L 升力系数脉动值C'D 平均背压Cpb 平均回转长度Lr Case 1 22.0 0.124 2.34 0.31 1.52 1.71 1.32 Case 2 22.0 0.121 2.30 0.32 1.47 1.62 1.37 Case 3 22.0 0.122 2.27 0.29 1.40 1.61 1.37 Lyn等[1] 21.4 0.130 2.10 — — 1.60 1.38 Nishimura & Taniike[3] 40.0 — 2.33 0.26 1.33 1.60 — Norberg[15] 22.0 0.130 2.10 — — 1.37 — Sonhankar et al (LES)[5] 22.0 0.132 2.32 0.20 1.54 1.63 — Wang & Vanke (LES)[8] 21.4 0.130 2.03 0.18 1.29 — 1.31 -
LYN D, EINAV S, RODI W, et al. A laser-Doppler velocimetry study of ensemble-averaged characteristics of the turbulent near wake of a square cylinder[J]. Journal of Fluid Mechanics, 1995, 304:285-319. doi: 10.1017/S0022112095004435 SAHA A, MURALIDHAR K, BISWAS G. Experimental study of flow past a square cylinder at high Reynolds numbers[J]. Experiments in Fluids, 2000, 29(6):553-563. doi: 10.1007/s003480000123 NISHIMURA A, TANIIKE Y. Fluctuating wind forces of a stationary two dim. square prism[C]//Proceedings of 16th National Symposium on Wind Engineering. Tokyo: Springer, 2000: 255-260. YEN S C, YANG C W. Flow patterns and vortex shedding behavior behind a square cylinder[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99(8):868-878. http://www.sciencedirect.com/science/article/pii/S0167610511001206 SOHANKAR A, NORBERG C, DAVIDSON L. Numerical simulation of flow past a square cylinder[C]//The 3rd ASME/JSME Joint Fluids Engineering Conference. San Francisco: American Society of Mechanical Engineers, 1999: 18-23. https://www.researchgate.net/publication/261497712_Numerical_simulation_of_flow_past_a_square_cylinder OKAJIMA A. Strouhal numbers of rectangular cylinders[J]. Journal of Fluid Mechanics, 1982, 123:379-398. doi: 10.1017/S0022112082003115 SRINIVAS Y, BISWAS G, PARIHAR A, et al. Large-eddy simulation of high Reynolds number turbulent flow past a square cylinder[J]. Journal of Engineering Mechanics, 2006, 132(3):327-335. doi: 10.1061/(ASCE)0733-9399(2006)132:3(327) WANG G, VANKA S. Large-eddy simulations of high Reynolds number turbulent flow over a square cylinder[J]. Dept. of Mechanical and Industrial Engineering Rep. No. CFD, 1996:96-02. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JENMDT000132000003000327000001&idtype=cvips&gifs=Yes RODI W, FERZIGER J, BREUER M, et al. Status of large eddy simulation:results of a workshop[J]. Transactions-American Society of Mechanical Engineers Journal of Fluids Engineering, 1997, 119:248-262. http://cn.bing.com/academic/profile?id=62d328febbd49681ec3af98629fd5f83&encoded=0&v=paper_preview&mkt=zh-cn VOKE P R. Flow past a square cylinder:test case LES2[J]. Direct and Large Eddy Simulation Ⅱ, Spring, 1997, 5:335-373 doi: 10.1007/978-94-011-5624-0_33 GRIGORIADIS D, BARTZIS J, GOULAS A. LES of the flow past a rectangular cylinder using the immersed boundary concept[J]. International Journal for Numerical Methods in Fluids, 2003, 41(6):615-632. doi: 10.1002/(ISSN)1097-0363 张伟, 葛耀君.方柱绕流粒子图像测速试验与数值模拟[J].同济大学学报:自然科学版, 2009, 37(7):857-861, 892. http://d.old.wanfangdata.com.cn/Periodical/tjdxxb200907002ZHANG Wei, GE Yaojun. Particle image velocimetry study and numerical simulation of turbulent near wake of square cylinder[J]. Journal of Tongji University:Natural Science, 2009, 37(7):857-861, 892. http://d.old.wanfangdata.com.cn/Periodical/tjdxxb200907002 LILLY D K. A proposed modification of the Germano subgrid-scale closure method[J]. Physics of Fluids A:Fluid Dynamics, 1992, 4(3):633-635. http://www.tandfonline.com/servlet/linkout?suffix=CIT0035&dbid=16&doi=10.1080%2F23311940.2018.1464368&key=10.1063%2F1.858280 CHOI S K. Note on the use of momentum interpolation method for unsteady flows[J]. Numerical Heat Transfer:Part A:Applications, 1999, 36(5):545-550. doi: 10.1080/104077899274679 NORBERG C. Flow around rectangular cylinders:pressure forces and wake frequencies[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 49(1/2/3):187-196. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ028816600/ 周强, 曹曙阳, 周志勇.亚临界雷诺数下圆柱体尾流结构的数值模拟[J].同济大学学报:自然科学版, 2013, 41(1):33-38. http://d.old.wanfangdata.com.cn/Periodical/tjdxxb201301006ZHOU Qiang, CAO Shuyang, ZHOU Zhiyong. Numerical studies of wake characteristics on a circular cylinder at sub-critical reynolds number[J]. Journal of Tongji University:Natural Science, 2013, 41(1):33-38. http://d.old.wanfangdata.com.cn/Periodical/tjdxxb201301006 OKA S, ISHIHARA T. Numerical study of aerodynamic characteristics of a square prism in a uniform flow[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2009, 97(11):548-559. http://www.sciencedirect.com/science/article/pii/S0167610509000671 NORBERG C. An experimental investigation of the flow around a circular cylinder:influence of aspect ratio[J]. Journal of Fluid Mechanics, 1994, 258:287-316. doi: 10.1017/S0022112094003332