Study of Three-Dimensional Wave Forces on Lowering of Steel-Suspending Cofferdam
-
摘要: 为了解跨海大桥桥台施工过程中哑铃型钢吊箱围堰与波浪的相互作用,研究了围堰下放过程中所受的波浪力.基于RANS方程和k-ε湍流方程建立了波浪-围堰相互作用三维数值模型,并采用流体体积法捕捉自由液面.该模型不但考虑了钢护筒对围堰周围波浪场影响,而且考虑了围堰的整个动态下放过程.结果表明:钢护筒的存在以及围堰动态下放过程均会对围堰周围波浪场产生显著影响,考虑钢吊箱围堰动态下放过程时的受力较固定淹没深度处围堰的受力增大10%;随着波浪高度和波浪周期增大,钢吊箱围堰在下放过程中所受最大水平力呈现增大趋势.Abstract: In order to understand the interaction between dumbbell shaped steel boxed cofferdam and wave during the construction of the bridge across the sea. The interaction between a steel-suspending cofferdam and wavesis studied, to investigate the influence of waves on the construction progress of the large dumbbell cofferdam. A numerical model for wave-cofferdam interactions is established, in which the Reynolds-averaged Navier-Stokes equations and k-ε model are used to generate waves, while the VOF(volume of fluid) method is used to trace the water surfaces. The influence of the steel tube and the lowering of the cofferdam on the wave field around the cofferdam are considered. The numerical simulation results show that the steel tube and lowering of the cofferdam have significant effects on the wave field around the cofferdam. Consideration of the lowering of the steel-suspending-cofferdam, the wave forces on the cofferdam will be 10% larger than that on the cofferdam with a certain submerged depth. With increments of the wave height and wave period, the wave forces acting on the lowering steel-suspending cofferdam tend to increase.
-
Key words:
- wave effect /
- cofferdams /
- three-dimensional models /
- numerical simulation
-
表 1 数值计算结果与实验结果的比较
Table 1. Comparison between numerical results and experimental data
kN 波浪力 频率/s-1, 波高/cm 4.33, 15.87 4.83, 16.20 5.24, 15.89 5.71, 10.19 6.28, 6.25 6.98, 3.98 Fx=ρgA1a2 实验值 4.54 4.58 5.12 5.54 5.22 5.19 计算值 4.68 4.49 5.23 5.77 5.41 5.02 Fy=ρgA1a2 实验值 1.26 0.99 0.85 0.74 0.77 0.71 计算值 1.29 1.05 0.84 0.69 0.79 0.70 -
徐伟, 徐赞云, 吴佳云.随机波浪力下超大型钢吊箱围堰动力响应分析[J].沈阳工业大学学报, 2012, 34(4):461-468. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201203730089XU Wei, XU Zanyun, WU Jiayun. Dynamic response analysis on ultra-large steel suspension box cofferdam under random wave force[J]. Journal of Shenyang University of Technology, 2010, 34(4):461-468. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201203730089 谢小松, 徐伟, 宋灿, 等.深水高桩承台哑铃状钢吊箱在地震作用下的响应分析[J].结构工程师, 2005, 21(6):43-45. doi: 10.3969/j.issn.1005-0159.2005.06.010XIE Xiaosong, XU Wei, SONG Can, et al. Responseanalysis of elevated pile foundation dumbbell-shapesteel suspending cofferdam in deep water under seismicaction[J]. Structural Engineers, 2005, 21(6):43-45. doi: 10.3969/j.issn.1005-0159.2005.06.010 徐伟, 宋灿, 骆艳斌, 等.深水高桩承台钢吊箱在风荷载作用下的动力性能分析[J].工业建筑, 2007, 37(7):82-84. doi: 10.3321/j.issn:1000-8993.2007.07.024XU Wei, SONG Can, LUO Yanbin, et al. Analysisof dynamic property of elevated pile foundation steelsuspending cofferdam in deep water under wind load[J]. Industrial Construction, 2007, 37(7):82-84. doi: 10.3321/j.issn:1000-8993.2007.07.024 XU Fei, LI Shucai, ZHANG Qianqing, et al. Analysis and design implications on stability of cofferdam subjected to water wave action[J]. Marine Georesources & Geotechnology, 2016, 34:181-187. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cf06e53d72eac82bbcb2135c45811c5d 祝兵, 康啊真, 邢帆, 等.三维波浪与圆端形吊箱围堰相互作用的数值模拟[J].桥梁建设, 2013, 43(6):82-87. http://d.old.wanfangdata.com.cn/Periodical/qljs201306014ZHU Bing, KANG Azhen, XING Fan, et al. Numerical simulation of interaction between three-dimensional wave and round-end boxed cofferdam[J]. Bridge Construction, 2013, 43(6):82-87. http://d.old.wanfangdata.com.cn/Periodical/qljs201306014 方庆贺.跨海近岸桥梁极端波浪作用研究[D].哈尔滨: 哈尔滨工业大学, 2012. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D238698 康啊真, 祝兵, 邢帆.基于坐标和IBM的大型圆柱波浪力数值模拟[J].西南交通大学学报, 2014, 49(2):233-239. doi: 10.3969/j.issn.0258-2724.2014.02.008KANG Azhen, ZHU Bing, XING Fan. Numerical simulation of wave force on large circular cylinder based on coordinate and immersed boundary method[J]. Journal of Southwest Jiaotong University, 2014, 49(2):233-239. doi: 10.3969/j.issn.0258-2724.2014.02.008 刘浪, 杨万理, 李乔.深水桥梁墩水耦合抗震分析方法研究[J].西南交大学报, 2015, 50(3):449-453. http://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201503010.htmLIU Lang, YANG Wanli, LI Qiao. Seismic analysis method of deep-water bridge pier and water coupling[J]. Journal of Southwest Jiaotong University, 2015, 50(3):449-453. http://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201503010.htm 陶建华, 刘连武.波浪和水流对大直径圆柱的共同作用力[J].水动力学研究与进展, 1993, 8(3):265-272. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000002596331TAO Jianhua, LIU Lianwu. Wave-current forces on alarge vertical cylinder[J].Journal of Hydrodynamics, 1993, 8(3):265-272. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000002596331 GHAMRY E I. Wave forces on a dock[R].Berkeley: University of California, Hydraulic Engineering Laboratory, 2006. DOUGLASS S L, CHEN Q, OLSEN J M, et al. Wave forces on bridge decks[R]. Washington D. C.: Federal Highway Administration, Office of Bridge Technology, 2006. XIAO H, HUANG W, TAO J, et al. Numerical modeling of wave-current forces acting on horizontal cylinder of marine structures by VOF method[J]. Ocean Engineering, 2013, 67(3):58-67. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c07beaae99764b5289d05af756faec96 LARSEN J, DANCY H. Open boundaries in short wave simulations-a new approach[J]. Coast Eng., 1983, 7(3), 85-97. doi: 10.1016-0378-3839(83)90022-4/ HIRT C W, NICHOLSB D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. J. Comput. Phys., 1981, 39:201-225. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0520120202876601 赵海涛, 滕斌, 李广伟, 等.竖直截断圆柱一阶波浪力的实验研究[J].中国海洋平台, 2003, 18(4):12-17. doi: 10.3969/j.issn.1001-4500.2003.04.003ZHAO Haitao, TENG Bin, LI Guangwei, et al. An Experimental study of first-harmonic wave force on vertical truncated cylinder[J]. China Offshore Platform, 2003, 18(4):12-17. doi: 10.3969/j.issn.1001-4500.2003.04.003