• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

开裂钢筋混凝土梁正常服役有效惯性矩随机分析

杨成 陈文龙 赵人达 徐腾飞

杨成, 陈文龙, 赵人达, 徐腾飞. 开裂钢筋混凝土梁正常服役有效惯性矩随机分析[J]. 西南交通大学学报, 2018, 53(3): 492-499. doi: 10.3969/j.issn.0258-2724.2018.03.009
引用本文: 杨成, 陈文龙, 赵人达, 徐腾飞. 开裂钢筋混凝土梁正常服役有效惯性矩随机分析[J]. 西南交通大学学报, 2018, 53(3): 492-499. doi: 10.3969/j.issn.0258-2724.2018.03.009
YANG Cheng, CHEN Wenlong, ZHAO Renda, XU Tengfei. Stochastic Analysis of Effective Moment of Inertia of Cracked In-Service Reinforced Concrete Beams[J]. Journal of Southwest Jiaotong University, 2018, 53(3): 492-499. doi: 10.3969/j.issn.0258-2724.2018.03.009
Citation: YANG Cheng, CHEN Wenlong, ZHAO Renda, XU Tengfei. Stochastic Analysis of Effective Moment of Inertia of Cracked In-Service Reinforced Concrete Beams[J]. Journal of Southwest Jiaotong University, 2018, 53(3): 492-499. doi: 10.3969/j.issn.0258-2724.2018.03.009

开裂钢筋混凝土梁正常服役有效惯性矩随机分析

doi: 10.3969/j.issn.0258-2724.2018.03.009
基金项目: 

国家自然科学基金资助项目 51720105005

国家重点研发计划资助项目 2016YFC0802205

国家自然科学基金资助项目 51778537

四川省应用基础研究资助项目 2017JY0238

详细信息
    作者简介:

    杨成(1977-), 男, 副教授, 博士, 研究方向为振动力学研究, E-mail:yangcheng@home.swjtu.edu.cn

    通讯作者:

    徐腾飞(1983-), 男, 副教授, 博士, 研究方向为钢筋混凝土桥梁随机分析, E-mail:soar1120@gmail.com

  • 中图分类号: TU375.1

Stochastic Analysis of Effective Moment of Inertia of Cracked In-Service Reinforced Concrete Beams

  • 摘要: 由于混凝土材料的不确定性和非线性特性,开裂钢筋混凝土梁的有效惯性矩很难准确地预测,往往影响了对结构正常使用极限状态的准确估计.按我国规范,推导了在正常使用极限状态范围内,钢筋混凝土梁的有效惯性矩无量纲表达,并利用蒙特卡洛抽样进行了随机分析;对应不同的配筋率,研究了有效惯性矩随机分析和确定性分之间的差异及其产生的机理,利用偏相关系数表达各随机变量与有效惯性矩之间的敏感性.分析结果表明:由于混凝土的开裂非线性,采用模型参数的均值进行确定分析的结果与采用模型随机参数进行随机分析结果的均值不一致,这种不一致是由混凝土截面开裂发生的随机性与开裂前后刚度的差异共同引起;通过随机分析结果回归,给出了钢筋混凝土梁有效惯性矩的预测均值与95%保证率的预测范围列表;混凝土抗压强度对有效惯性矩几乎没有影响,而混凝土抗拉强度的敏感性最大.

     

  • 图 1  无量纲截面惯性矩均值面

    Figure 1.  Surface of the mean values of dimensionless moment of inertia

    图 2  不同配筋率的无量纲截面惯性矩均值曲线对比

    Figure 2.  Comparison of mean values of the dimensionless moment of inertia at varying reinforcement ratios

    图 3  无量纲截面惯性矩的累积函数分布

    Figure 3.  Cumulative distribution function of the dimensionless moment of inertia

    图 4  置信区间偏移系数

    Figure 4.  Offset coefficient of the confidence interval

    图 5  随机变量的敏感性系数(PCC)

    Figure 5.  Sensitivity coefficient of random variables (PCC)

    表  1  随机变量的随机特性

    Table  1.   Statistical properties of random variables

    随机变量 均值 变异系数 分布形式
    βfc=fc=βfcfcm 1 0.15 正态分布
    βEc=Ec=βEc(fc/10)1/3 21 500 0.08 正态分布
    βft=ft=βft(ft)2/3 0.3 0.15 正态分布
    βEs=Es=βEsEsm 1 0.033 正态分布
    下载: 导出CSV

    表  2  公式(9)的拟合系数

    Table  2.   Fitting coefficients for Eq. (9)

    系数 fcm/MPa
    30 40 50 60
    a0 -0.297 2 -0.060 0 -0.046 1 -0.043 3
    a1 0.915 4 0.844 7 0.816 6 0.803 3
    a2 1.383 0 0.864 9 0.810 9 0.788 5
    a3 -0.345 8 -0.324 2 -0.309 5 -0.298 9
    a4 -0.157 4 -0.110 9 -0.110 1 -0.120 5
    a5 -1.272 0 -0.921 2 -0.879 2 -0.859 9
    a6 0.048 8 0.045 1 0.042 4 -0.040 4
    a7 0.063 5 0.061 4 0.060 1 0.060 5
    a8 -0.018 4 -0.033 5 -0.034 1 -0.031 0
    a9 0.330 4 0.254 6 0.245 3 0.240 8
    下载: 导出CSV

    表  3  Csup的拟合系数(0.7McrM≤1.3Mcr)

    Table  3.   Fitting coefficients for Csup (0.7Mcr < M≤1.3Mcr)

    系数 fcm/MPa
    30 40 50 60
    b0 3.459 3.768 3.565 4.160
    b1 0.243 0.087 -0.065 -0.067
    b2 -12.340 -13.000 -12.260 -14.060
    b3 -0.891 -0.690 -0.628 -0.662
    b4 3.150 3.143 3.275 3.339
    b5 10.040 10.490 9.600 11.280
    b6 0.057 -0.009 -0.009 -0.010
    b7 0.550 0.563 0.519 0.577
    b8 -2.697 -2.711 -2.717 -2.814
    b9 -1.507 -1.552 -1.21 -1.681
    下载: 导出CSV

    表  4  Csup的拟合系数(1.3McrM≤2Mcr)

    Table  4.   Fittingcoefficients for Csup(1.3Mcr < M≤2Mcr)

    系数 fcm/MPa
    30 40 50 60
    b0 11.190 11.850 12.520 12.020
    b1 -3.742 -3.418 -3.376 -3.522
    b2 -15.160 -16.470 -17.590 -16.590
    b3 0.814 0.775 0.792 0.968
    b4 2.911 2.611 2.506 2.443
    b5 7.419 8.251 8.925 8.348
    b6 -0.100 -0.098 -0.094 -0.117
    b7 -0.222 -0.209 -0.227 -0.276
    b8 -0.647 -0.569 -0.523 -0.473
    b9 -1.240 -1.413 -1.553 -1.448
    下载: 导出CSV

    表  5  Cinf的拟合系数(0.7McrM≤1.3Mcr)

    Table  5.   Fittingcoefficients for Cinf (0.7Mcr < M≤1.3Mcr)

    系数 fcm/MPa
    30 40 50 60
    b0 5.850 6.078 6.266 6.332
    b1 0.390 0.456 0.329 0.387
    b2 -17.960 -18.730 -19.170 -19.420
    b3 -0.459 -0.445 -0.396 -0.396
    b4 1.320 1.134 1.230 1.092
    b5 14.870 15.640 15.980 16.240
    b6 0.065 0.062 0.065 0.067
    b7 0.117 0.118 0.068 0.064
    b8 -0.909 0.820 -0.804 -0.730
    b9 -3.715 -3.959 -4.058 -4.146
    下载: 导出CSV

    表  6  Cinf的拟合系数(1.3McrM≤2Mcr)

    Table  6.   Fittingcoefficients for Cinf(1.3Mcr < M≤2Mcr)

    系数 fcm/MPa
    30 40 50 60
    b0 -6.724 -6.985 -7.292 -7.615
    b1 1.696 1.638 1.651 1.721
    b2 9.641 10.080 10.580 11.080
    b3 -0.151 -0.125 -0.127 -0.168
    b4 -1.624 -1.609 -1.622 -1.657
    b5 -4.673 -4.909 -5.180 -5.440
    b6 0.003 0.003 0.002 0.013
    b7 0.078 0.066 0.067 0.071
    b8 0.389 0.395 0.398 0.406
    b9 0.759 0.799 0.849 0.894
    下载: 导出CSV
  • BISCHOFF P H. Reevaluation of deflection prediction for concrete beams reinforced with steel and fiber-reinforced polymer bars[J]. Journal of Structural Engineering, 2005, 114(7):1499-66. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5eb4eb09b58e59dc22467eacd2b49d7e
    徐腾飞, 白雪濛, 赵人达.加载过程中钢筋混凝土梁弯曲型变的随机性分析[J].西南交通大学学报, 2015, 50(4):630-634. doi: 10.3969/j.issn.0258-2724.2015.04.009

    XU Tengfei, BAI Xuemeng, ZHAO Renda. Stochastic analysis of bending deflection for reinforced concrete beam in loading process[J]. Journal of Southwest Jiaotong University, 2015, 50(4):630-634. doi: 10.3969/j.issn.0258-2724.2015.04.009
    GILBERT R I. Tension stiffening in lightly reinforced concrete slabs[J]. Journal of the Structural Division ASCE, 2007, 133(6):899-903. http://cn.bing.com/academic/profile?id=9ff00ac19894721356adbe553e227e57&encoded=0&v=paper_preview&mkt=zh-cn
    丁大钧.钢筋混凝土构件抗裂度、裂缝和刚度[M].南京:南京工学院出版社, 1986:17-26.
    过镇海, 时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社, 2007:257-267.
    李志华, 苏小卒.钢筋混凝土受弯构件挠度计算方法综述分析[J].四川建筑科学研究, 2011, 37(2):30-34. doi: 10.3969/j.issn.1008-1933.2011.02.008

    LI Zhihua, SU Xiaozu. Review of study on the methods for computing deflections of reinforced concrete flexural members[J]. Sichuan Building Science, 2011, 37(2):30-34. doi: 10.3969/j.issn.1008-1933.2011.02.008
    XU Tengfei, XIANG Tianyu, ZHAO Renda, et al. Stochastic analysis on flexural behavior of reinforced concrete beams based on piecewise response surface scheme[J]. Engineering Failure Analysis, 2016, 59:211-222. doi: 10.1016/j.engfailanal.2015.10.004
    GILBERT R I, WARNER R F. Tension stiffening in reinforced concrete slabs[J]. Journal of the Structural Division, 1978, 104(2):1885-2900. http://cn.bing.com/academic/profile?id=bad026accbc3a0e2904b30472290761e&encoded=0&v=paper_preview&mkt=zh-cn
    BALAKRISHAN S, MURRAY D W. Concrete constitutive model for NLFE analysis of structures[J]. Journal of Structural Engineering, 1988, 114(7):1449-1466. doi: 10.1061/(ASCE)0733-9445(1988)114:7(1449)
    COLLINS M P, VECCHIO F J. The modified compression-field theory for reinforced concrete elements subjected to shear[J]. ACI Journal, 1986, 83(2):219-231. doi: 10.1021-nn1019972/
    PARKHYA G K., MORLEY C T. Tension stiffening and moment-curvature relation for reinforced concrete elements[J]. ACI Journal, 1990, 87(5):597-605. https://www.concrete.org/publications/internationalconcreteabstractsportal/m/details/id/2680
    FLOEGL H, MANG H A. Tension stiffening concept based on bond slip[J]. Journal of the Structural Division ASCE, 1982, 108(12):2681-2701. http://cn.bing.com/academic/profile?id=5a80f08c13e009794a567315b83588d0&encoded=0&v=paper_preview&mkt=zh-cn
    CHOIL C K, CHEUNG S H. Tension stiffening model for planar reinforced concrete members[J]. Computers and Structures, 1996, 59(1):179-190. doi: 10.1016/0045-7949(95)00146-8
    BRANSON D E. Instantaneous and time-dependent deflections of simple and continuous reinforced concrete beams[R]. Alabama: Alabama Highway Department, 1963.
    ACI Committee 318. ACI 318-05 building code requirements for structural concrete[S]. Washington D. C.: American Concrete Institute, 2005.
    BISCHOFF P H, ANDREW S. Effective moment of inertia for calculating defections of concrete moment containing steel reinforcement and fiber-Reinforced polymer reinforcement[J]. ACI Structural Journal, 2007, 104(1):68-5. http://cn.bing.com/academic/profile?id=3c5770e47671fef7188c3c3e5b8f34d6&encoded=0&v=paper_preview&mkt=zh-cn
    中华人民共和国住房与建设保障部. GB50010——2010混凝土结构设计规范[S].北京: 中国建筑工业出版社, 2010.
    姜磊, 姚继涛, 信任, 等.验研究钢筋混凝土薄板受拉刚化效应[J].混凝土, 2011(1):62-64. http://d.old.wanfangdata.com.cn/Periodical/hnt201101016

    JIANG Lei, YAO Jitao, XIN Ren, et al. Tension stiffening in reinforced concrete slabs and test research[J]. Concrete, 2011(1):62-64. http://d.old.wanfangdata.com.cn/Periodical/hnt201101016
    JUNG J K, MAHMOUD M R T, HYUK-CHUN N, et al. Reliability analysis to resolve difficulty in choosing from alternative deflection models of RC beams[J]. Mechanical Systems and Signal Processing, 2013, 37:240-252. doi: 10.1016/j.ymssp.2012.06.024
    周婧, 陈秦, 王慧英.钢筋混凝土框架结构竖向不规则参数的概率评估[J].建筑结构学报, 2014, 35(3):39-45. http://d.old.wanfangdata.com.cn/Periodical/jzjgxb201403006

    ZHOU Jing, CHEN Qin, WANG Huiying. Probability evaluation of vertical regularity parameters for reinforced concrete frame structures[J]. Journal of Building Structures, 2014, 35(3):39-45. http://d.old.wanfangdata.com.cn/Periodical/jzjgxb201403006
    褚松涛, 曹少卫, 高夕良.成都东客站承轨层桥建合一结构设计施工综合技术[J].建筑施工, 2010, 32(6):520-524. doi: 10.3969/j.issn.1004-1001.2010.06.016

    CHU Songtao, CAO Shaowei, GAO Xiliang. Comprehensive techonogy of structure design and construction for bridge and building combined rail bearing floor of cheng du east railway station[J]. Building Construction, 2010, 32(6):520-524. doi: 10.3969/j.issn.1004-1001.2010.06.016
    徐腾飞, 向天宇, 赵人达.偏心钢筋混凝土受压柱长期变形分析[J].西南交通大学学报, 2014, 49(4):26-630. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xnjtdxxb201404010

    XU Tengfei, XIANG Tianyu, ZHAO Renda. Long-term random deflection of eccentrically load RC column[J]. Journal of Southwest Jiaotong University, 2014, 49(4):26-630. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xnjtdxxb201404010
    徐腾飞, 向天宇, 白雪濛, 等.基于分片响应面的钢筋混凝土梁变形随机模拟[J].工程力学, 2014, 31(11):170-174. http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201411023.htm

    XU Tengfei, XIANG Tianyu, BAI Xuemeng, et al. Stochastic simulation of reinforced concrete beam with piecewise response surface[J]. Engineering Mechanics, 2014, 31(11):170-174. http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201411023.htm
    XU Tengfei, CASTEL A, GILBERT R I, et al. Modeling the tensile steel reinforcement strain in RC-beams subjected to cycles of loading and unloading[J]. Engineering Structures, 2016, 126:92-105. doi: 10.1016/j.engstruct.2016.07.043
    XU Tengfei, CASTEL A. Modeling the dynamic stiffness of cracked reinforced concrete beams under low-amplitude vibration loads[J]. Journal of Sound and Vibration, 2016, 368:135-147. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=365141718e2d5c6cd5d6c8882cb8c065
    VAL D V, STEWART M G, MELCHERS R E. Effect of reinforcement corrosion reliability of highway bridges[J]. Engineering Structure, 1998, 20(97):1010-1019. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ad1fc36b75edcbc78ebdf06c9f3a7df9
    YANG I H. Prediction of time-dependent effects in concrete structures using early measurement data[J]. Engineering Structures, 2007, 29:2701-2710. doi: 10.1016/j.engstruct.2007.01.015
    YANG I H.. Uncertainty and sensitivity analysis of time-dependent effects in concrete structures[J]. Engineering Structures, 2007, 29:1366-1374. doi: 10.1016/j.engstruct.2006.07.015
    徐腾飞, 吴涤, 汪军, 等.预应力混凝土简支足尺试验梁变形随机分析[J].中国公路学报, 2015, 28(9):67-72. doi: 10.3969/j.issn.1001-7372.2015.09.009

    XU Tengfei, WU Di, WANG Jun, et al. Stochastic analysis of deflection of prestressed concrete simply supported full-scale test beam[J]. China Journal of Highway and Transport, 2015, 28(9):67-72. doi: 10.3969/j.issn.1001-7372.2015.09.009
  • 加载中
图(5) / 表(6)
计量
  • 文章访问数:  530
  • HTML全文浏览量:  257
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-08
  • 刊出日期:  2018-06-01

目录

    /

    返回文章
    返回