Prediction of Rock Bursts for Sangzhuling Tunnel Located on Lhasa-Nyingchi Railway Under Coupled Thermo-Mechanical Effects
-
摘要: 热力耦合作用是高温高地应力隧道岩爆预测中一个新的问题.在新建拉林铁路桑珠岭隧道开挖过程中,利用现场温度测试数据反演并得到隧道不同埋深时的地温,通过热力耦合数值模拟计算得到隧道开挖过程中的洞周应力变化规律,利用卢森、陶振宇、王元汉、樊建平4种岩爆判据对隧道不同温区、不同洞周应力释放率的岩爆发生烈度和岩爆范围进行预测,最后将预测结果与现场岩爆进行了比较分析.研究结果表明:桑珠岭隧道地温梯度为5.5℃/100 m,隧道埋深越大地温越高;在以自重应力场为主的深埋段,最大压应力集中在拱顶和拱脚部位;在45~85℃地温区间,洞周最大切向应力和最大主应力随应力释放率增大而线性增长,当洞周应力释放率为100%时,其增加量分别为84~96 MPa、93~96 MPa,同时岩爆烈度等级也相应增加;判据预测与现场实测的比对表明,高温热力耦合作用在应力释放过程中加速了岩爆发生,在应力释放率前期,陶振宇判据对中等及以上岩爆的发生更加敏感,而在应力释放中后期王元汉判据与实测结果的相似度更为一致.Abstract: Coupled thermo-mechanical effects on the prediction of rock bursts for tunnels with special geostress and high geotemperatures is a new problem that needs to be solved. During the excavation of the newly built Sangzhuling tunnel in the Lhasa-Nyingchi railway project, the geotemperature at different buried depths was obtained by field temperature test data inversion. The gradually changing hole stress during the excavation process was clarified by coupled thermo-mechanical numerical simulation. The range and intensity of rock bursts throughout the entire calculation scope of a typical section under various stress-relieving coefficients and geotemperature conditions, combined with different of rock burst criteria, such as Russense, TAO Zhenyu, WANG Yuanhan, and FAN Jianping criteria, were predicted. Finally, the prediction results were compared with the field measurements. The results show that the geothermal gradient of Sangzhuling tunnel is 5.5℃/100 m. As the buried depth of the tunnel increases, so does the geotemperature. The maximum compressive stress is concentrated in the vault and the arch springing in the deep-buried tunnel section with the gravity stress field. At 45-85℃, the maximum tangential and principal stresses increase linearly with an increase in the stress-relieving coefficient, and the maximum tangential and principal stresses increase by 84-96 MPa and 93-96 MPa, respectively, when the stress-relieving coefficient reaches 100%; the intensity of rock bursts will increase under these conditions. The analysis using the four methods for predicting rock bursts compared with rock burst data from results in field tests shows that the occurrence of rock bursts will be accelerated during stress release by coupled thermo-mechanical effects. The prediction of middle level and greater intensity rock bursts using the TAO Zhenyu criterion shows great sensitivity for the earlier stages of stress release. In the mid-late periods of stress release, the rock bursts prediction results using the WANG Yuanhan criterion are in accordance with the measured results.
-
表 1 桑珠岭隧道区段地温及构造应力表
Table 1. Geothermal and tectonic stress in Sangzhuling Tunnel
断面里程 埋深/m 地温/℃ σx/MPa σy/MPa D1K179+000 650 42.85 17.07 15.92 D1K180+000 700 45.60 17.07 15.92 D1K181+000 700 45.60 17.07 15.92 D1K181+700 800 51.10 17.07 15.92 D1K182+000 1000 62.10 17.07 15.92 D1K183+000 1500 89.60 32.22 36.13 D1K184+000 1370 82.45 32.22 36.13 D1K184+600 1400 84.10 32.22 36.13 D1K185+000 1200 73.10 32.73 32.34 D1K186+000 900 56.60 17.07 15.92 D1K187+000 1250 75.85 32.73 32.34 表 2 模型相关物理力学及热力学参数
Table 2. Physical-mechanical and thermodynamic parameters for the model calculation
弹性模量/GPa 泊松比μ 密度ρ/(kg·m-3) 粘聚力C/MPa 内摩擦角φ/(°) 热膨胀系数α/(m·℃-1) 导热系数λ/(W·(m·K)-1) c/(J·(kg·℃)-1) 35 0.23 26 1.5 50 8×10-6 3.69 630 表 3 不同应力释放率时的最大洞周应力值
Table 3. Stress values with various stress-releasing coefficients
MPa 断面里程 计算地温度/℃ η=20% η=40% η=60% η=80% η=100% τ σ1 τ σ1 τ σ1 τ σ1 τ σ1 D1K179+000~D1K181+700 45 19.5 20.6 40.2 42.2 58.3 59.4 68.2 72.3 85.5 88.4 D1K181+700~D1K182+000 55 21.3 22.4 47.5 48.8 60.2 63.3 85.6 87.8 95.4 97.2 D1K182+000~D1K183+000 65 28.8 31.2 48.5 51.6 65.5 68.3 98.4 99.8 110.3 110.2 D1K183+000~D1K185+000 85 33.4 34.2 51.8 54.3 71.4 73.3 94.3 98.2 109.8 110.2 D1K185+000 75 30.2 32.6 52.1 53.7 64.5 67.7 91.2 93.1 105.6 107.5 D1K186+000 55 21.3 22.4 47.5 48.8 60.2 63.3 85.6 87.8 95.4 97.2 D1K187+000 75 30.2 32.6 52.1 53.7 64.5 67.7 91.2 93.1 105.6 107.5 注:以压应力为正. 表 4 岩爆预测判据(η=100 %)
Table 4. Rock burst criteria (η=100 %)
判据 判据标准 表现形式 卢森判据τ/RC τ/RC<0.2 无岩爆 0.2≤τ/RC<0.3 弱岩爆 0.3≤τ/RC<0.55 中等岩爆 0.55≤τ/RC 强烈岩爆 陶振宇判据RC/σ1 RC/σ1>14.5 无岩爆 5.5≤RC/σ1<14.5 低岩爆 2.5≤RC/σ1<5.5 中等岩爆 RC/σ1<2.5 高岩爆 Rb/σ1判据 — — — — 3≤τ/RC≤6 可能岩爆 τ/RC<3 严重岩爆 王元汉判据τ/RC τ/RC<0.3 无岩爆 0.3≤τ/RC<0.5 弱岩爆 0.5≤τ/RC≤0.7 中等岩爆 0.7<τ/RC 强烈岩爆 表 5 中等烈度岩爆对应洞周应力释放率
Table 5. Stress coefficients corresponding to middle level rock bursts
% 里程 卢森判据 陶振宇判据 Rb/σ1判据 王元汉判据 D1K179+000 41 35 50 82 D1K180+000 41 35 50 82 D1K181+000 41 35 50 82 D1K181+700 38 30 40 66 D1K182+000 35 24 39 62 D1K183+000 30 21 37 59 D1K184+000 29 21 37 59 D1K184+600 30 21 37 59 D1K185+000 32 22 38 64 D1K186+000 37 30 40 66 D1K187+000 32 22 38 64 表 6 计算岩爆烈度与现场等级的重复率比较
Table 6. Repetition rates between calculation and in situ records of rock bursts
% 岩爆判据 η/% 20 40 60 80 100 卢森判据 58.25 58.25 33.89 33.89 11.76 陶振宇判据 33.89 11.76 11.76 11.76 4.40 Rb/σ1判据 65.61 94.98 33.22 33.22 2.29 王元汉判据 5.02 5.02 58.25 58.25 80.94 -
KAISER P K, CAI Ming. Design of rock support system under rockburst condition[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 4(3):215-227. http://d.wanfangdata.com.cn/Periodical_yslxyytgcxb-e201203003.aspx 汪波, 何川, 吴德兴.深埋特长隧道岩爆预测研究[J].铁道工程学报, 2009, 26(11):45-49. doi: 10.3969/j.issn.1006-2106.2009.11.011WANG Bo, HE Chuan, WU Dexin. Research on the prediction of rock burst for deep-burying long tunnel[J]. Journal of Railway Engineering Society, 2009, 26(11):45-49. doi: 10.3969/j.issn.1006-2106.2009.11.011 ORTLEPP W D, STACEY T R. Rockburst mechanisms in tunnels and shafts[J]. Tunnelling and Underground Space Technology, 1994, 9(1):59-65. doi: 10.1016/0886-7798(94)90010-8 冯夏庭, 陈炳瑞, 明华军, 等.深埋隧洞岩爆孕育规律与机制:即时型岩爆[J].岩石力学与工程学报, 2012, 31(3):561-569. doi: 10.3969/j.issn.1000-6915.2012.03.014FENG Xiating, CHEN Bingrui, MING Huajun, et al. Evolution law and mechanism of rockburst in deep tunnel:immediate rockburst[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3):561-569. doi: 10.3969/j.issn.1000-6915.2012.03.014 许锡昌, 刘泉声.高温下花岗岩基本力学性能初步研究[J].岩土工程学报, 2000, 22(3):332-335. doi: 10.3321/j.issn:1000-4548.2000.03.014XU Xichang, LIU Quansheng. A preliminary study on basic mechanical properties for granite at high temperature[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(3):332-335. doi: 10.3321/j.issn:1000-4548.2000.03.014 DWIVEDI R D, GOEL R K, PRASAD V R. Thermomechanical properties of Indian and other granites[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(3):303-315. doi: 10.1016/j.ijrmms.2007.05.008 刘泉声, 许锡昌.温度作用下脆性岩石的损伤分析[J].岩石力学与工程学报, 2000, 19(4):408-411. doi: 10.3321/j.issn:1000-6915.2000.04.002LIU Quansheng, XU Xichang. The analysis of damage of brittle rock under temperature[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(4):408-411. doi: 10.3321/j.issn:1000-6915.2000.04.002 陈国庆, 李天斌, 张岩, 等.花岗岩隧道脆性破坏的温度效应研究[J].岩土力学, 2013, 34(12):3513-3519. http://d.old.wanfangdata.com.cn/Periodical/ytlx201312026CHEN Guoqing, LI Tianbin, ZHANG Yan, et al. Thermal effect of brittle failure for granite tunnel[J]. Rock and Soil Mechanics, 2013, 34(12):3513-3519. http://d.old.wanfangdata.com.cn/Periodical/ytlx201312026 左建平, 谢和平, 周宏伟.温度压力耦合作用下的岩石屈服破坏研究[J].岩石力学与工程学报, 2005, 24(16):2917-2921. doi: 10.3321/j.issn:1000-6915.2005.16.018ZUO Jianping, XIE Heping, ZHOU Hongwei. Study on failure behavior of rock under coupling effects of temperature and confining pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16):2917-2921. doi: 10.3321/j.issn:1000-6915.2005.16.018 李天斌, 高美奔, 陈国庆.硬脆性岩石热-力-损伤本构模型及其初步运用[J].岩土工程学报, 2017, 39(8):1477-1484. http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201708019LI Tianbin, GAO Meiben, CHEN Guoqing. A thermal damage constitutive model for hard brittle rocks and its preliminary application[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 39(8):1477-1484. http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201708019 刘文岗, 王驹, 周宏伟.高放废物处置库花岗岩热-力耦合模拟研究[J].岩石力学与工程学报, 2009, 28(增刊1):2875-2883. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb2009z1043LIU Wengang, WANG Ju, ZHOU Hongwei. Coupled thermo-mechanical analysis of granite for high-level radioactive waste repository[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(Sup.1):2875-2883. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb2009z1043 阴红宇.热-力耦合作用下硬岩力学行为及岩爆发生机制研究[D].成都: 成都理工大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10616-1015312899.htm WANNE T S, YOUNG R P. Bonded-particle modeling of thermally fractured granite[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(5):789-799. doi: 10.1016/j.ijrmms.2007.09.004 张国云.岩爆与地热问题调研报告[R].北京: 铁道部隧道工程局科研所, 2000. 郤保平, 赵阳升.高温高压下花岗岩中钻孔围岩的热物理及力学特性试验研究[J].岩石力学与工程学报, 2010, 29(6):1245-1253. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201006021XI Baoping, ZHAO Yangsheng. Experimental study of thermo-physico-mechanical property of drilling surrounding rock in granite under high temperature and high pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(6):1245-1253. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201006021