• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

生物炭对生物滞留池水文效果的影响

田婧 刘丹

田婧, 刘丹. 生物炭对生物滞留池水文效果的影响[J]. 西南交通大学学报, 2018, 53(2): 420-426. doi: 10.3969/j.issn.0258-2724.2018.02.028
引用本文: 田婧, 刘丹. 生物炭对生物滞留池水文效果的影响[J]. 西南交通大学学报, 2018, 53(2): 420-426. doi: 10.3969/j.issn.0258-2724.2018.02.028
TIAN Jing, LIU Dan. Effects of Biochar on Hydrologic Performance of Bioretention[J]. Journal of Southwest Jiaotong University, 2018, 53(2): 420-426. doi: 10.3969/j.issn.0258-2724.2018.02.028
Citation: TIAN Jing, LIU Dan. Effects of Biochar on Hydrologic Performance of Bioretention[J]. Journal of Southwest Jiaotong University, 2018, 53(2): 420-426. doi: 10.3969/j.issn.0258-2724.2018.02.028

生物炭对生物滞留池水文效果的影响

doi: 10.3969/j.issn.0258-2724.2018.02.028
基金项目: 

国家建设高水平大学公派研究生项目 留金发[2012]3013

美国特拉华州交通部科研基金资助项目 1739-1

详细信息
    作者简介:

    田婧(1987-), 女, 博士研究生, 研究方向为固体废弃物控制与资源化, E-mail:tian_wenling@126.com

    通讯作者:

    刘丹(19-), 男, 教授, 博士, 研究方向为固体废弃物控制与资源化, E-mail:liudan-swju@163.com

  • 中图分类号: X52

Effects of Biochar on Hydrologic Performance of Bioretention

  • 摘要: 为了研究生物炭的添加对生物滞留池雨水下渗、持水能力及水力停留时间的影响,在一野外中试生物滞留池中加入了4%(w/w)的生物炭,对该生物滞留池进行了导水率测试和3次溴示踪模拟降雨实验.研究结果表明:与无生物炭的对照组相比,生物炭的施用将填料土的饱和导水率增大了1.5倍;生物滞留池的水力停留时间延长了近1 h;渗流区的体积含水量增加了11%~23%;施用生物炭可全面提高生物滞留池的水力表现,避免溢流,削减洪峰,增加保水,减少雨水径流的排放.

     

  • 图 1  中试场地平面布置

    Figure 1.  Outline of pilot-scale field test site

    图 2  中试生物滞留系统侧剖图及监测采样示意图(单位:cm)

    Figure 2.  Section view of a pilot-scale bioretention system and sampling points (unit: cm)

    图 3  填料土非饱和导水率

    Figure 3.  Unsaturated hydraulic conductivity of filter media

    图 4  溴示踪剂浓度随时间的变化

    Figure 4.  Concentration of bromide tracer varies with time

    图 5  体积含水量随深度的变化

    Figure 5.  Volumetric water contents varies with depths

    表  1  填料土理化性质

    Table  1.   Physicochemical properties of filter media

    性质 对照组 实验组
    砂/% 93.73 93.62
    粉砂/% 1.04 1.17
    黏土/% 5.24 5.21
    D50/mm 0.53 0.53
    pH 4.87±0.04 7.88±0.06
    有机质/% 2.79±0.28 5.20±0.39
    容重/(g·cm-3) 1.45±0.06 1.35±0.05
    总孔隙率/(v·v-1) 0.39±0.03 0.50±0.01
    CEC/(cmol·kg-1) 5.44±0.01 7.20±0.34
    下载: 导出CSV

    表  2  田间实验过程及溴和硝态氮在不同阶段的平均施用浓度

    Table  2.   Procedures of the field tests and the mean concentrations of Br and NO3 -N at different stages

    实验次序 实验日期 总时长/h 稳流阶段 脉冲阶段 回收阶段
    时长/h Br/(mg·L-1) NO3-N/(mg·L-1) 时长/h Br/(mg·L-1) NO3-N/(mg·L-1) 时长/h Br/(mg·L-1) NO3-N/(mg·L-1)
    1 2015-04-05 24 3.0 0 2.5 0.5 92.8 12.4 20.5 0 2.5
    2 2015-06-29 36 3.0 0 1.7 0.5 89.9 10.7 32.5 0 1.6
    3 2015-08-12 26 3.7 0 2.5 0.5 99.8 23.6 22.0 0 22.5
    下载: 导出CSV

    表  3  中试生物滞留池水力表现

    Table  3.   Hydraulic performance of pilot-scale bioretention

    实验时期 组别 Br回收率/% 水力停留时间/h 渗流区持水量/L
    2015-04-05 对照组 89.0 7.0 150
    实验组 83.7 7.9 185
    2015-06-29 对照组 90.0 6.3 178
    实验组 81.0 7.0 197
    2015-08-12 对照组 86.4 4.1 177
    实验组 80.6 7.3 200
    均值 对照组 88.5±1.9 5.8±1.5 168±15.9
    实验组 81.8±1.7 7.4±0.5 194±7.9
    下载: 导出CSV
  • HUNT W F, DAVIS A P, TRAVER R G. Meeting hydrologic and water quality goals through targeted bioretention design[J]. Journal of Environmental Engineering, 2012, 138(6):698-707. doi: 10.1061/(ASCE)EE.1943-7870.0000504
    COUSTUMER L S, FLETCHER T D, Deletic A, et al. Hydraulic performance of biofilter systems for stormwater management:Influences of design and operation[J]. Journal of Hydrology, 2009, 376(1/2):16-23. http://www.sciencedirect.com/science/article/pii/S0022169409004028
    AHIABLAME L M, ENGEL B A, CHAUBEY I. Effectiveness of low impact development practices:literature review and suggestions for future research[J]. Water, Air, & Soil Pollution, 2012, 223(7):4253-4273. doi: 10.1007/s11270-012-1189-2
    DAVIS A P, HUNT W F, TRAVER R G, et al. Bioretention technology:overview of current practice and future needs[J]. Journal of Environmental Engineering-Asce, 2009, 135(3):109-117. doi: 10.1061/(ASCE)0733-9372(2009)135:3(109)
    Delaware Department of Natural Resources and Environmental Control (DNREC). 3.06.2 Post construction stormwater BMP standards and specifications[EB/OL]. Dover, DE: DNREC, 2013[2018-01-11]. http://www.dnrec.delaware.gov/.
    North Carolina Deparment of Environmental Quality (NCDWQ). Stormwater best management practices manual[EB/OL]. Raleigh, NC: NCDWQ, 2007[2018-01-11]. http://www.deq.nc.gov/.
    Prince George's County Department of Environmental Resources (PGDER). Bioretention manual[EB/OL]. The Prince George's County, MD: PGDER, 2007[2018-01-11]. http://www.ct.gov/.
    LEHMANN J, JOSEPH S. Biochar for environmental management:an introduction, biochar for environmental management, science and technology[M]. London:Earthscan, 2009:1-12.
    CHENG C H, LEHMANN J, ENGELHARD M H. Natural oxidation of black carbon in soils:changes in molecular form and surface charge along a climosequence[J]. Geochimica et Cosmochimica Acta, 2008, 72(6):1598-1610. doi: 10.1016/j.gca.2008.01.010
    LIANG B, LEHMANN J, SOLOMON D, et al. Black carbon increases cation exchange capacity in soils[J]. Soil Science Society of America Journal, 2006, 70(5):1719-1730. doi: 10.2136/sssaj2005.0383
    BREWER C E, CHUANG V J, MASIELLO C A, et al. New approaches to measuring biochar density and porosity[J]. Biomass and Bioenergy, 2014, 66:176-185. doi: 10.1016/j.biombioe.2014.03.059
    LEHMANN J. Bio-energy in the black[J]. Frontiers in Ecology and the Environment, 2007, 5(7):381-387. doi: 10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2
    GLASER B, LEHMANN J, ZECH W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal-a review[J]. Biology and Fertility of Soils, 2002, 35(4):219-230. doi: 10.1007/s00374-002-0466-4
    SPOKAS K A, NOVAK J M, VENTEREA R T. Biochar's role as an alternative N-fertilizer:ammonia capture[J]. Plant and Soil, 2011, 350(1/2):35-42. doi: 10.1007/s11104-011-0930-8
    DEMPSTER D N, JONES D L, MURPHY D V. Clay and biochar amendments decreased inorganic but not dissolved organic nitrogen leaching in soil[J]. Soil Research, 2012, 50(3):216-221. doi: 10.1071/SR11316
    KAPPLER A, WUESTNER M L, RUECKER A, et al. Biochar as an electron shuttle between bacteria and Fe(Ⅲ) minerals[J]. Environmental Science & Technology Letters, 2014, 1(8):339-344. doi: 10.1021/ez5002209
    HOLLISTER C C, BISOGNI J J, LEHMANN J. Ammonium, nitrate, and phosphate sorption to and solute leaching from biochars prepared from corn stover (Zea mays L.) and oak wood (Quercus spp.)[J]. Journal of Environmental Quality, 2013, 42(1):137-144. doi: 10.2134/jeq2012.0033
    SARKHOT D V, GHEZZEHEI T A, BERHE A A. Effectiveness of biochar for sorption of ammonium and phosphate from dairy effluent[J]. Journal of Environmental Quality, 2013, 42(5):1545-1554. doi: 10.2134/jeq2012.0482
    CHEN X, CHEN G, CHEN L, et al. Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution[J]. Bioresour Technol, 2011, 102(19):8877-8884. doi: 10.1016/j.biortech.2011.06.078
    BEESLEY L, MORENO-JIMENEZ E, GOMEZ-EYLES J L. Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil[J]. Environ Pollut, 2010, 158(6):2282-2287. doi: 10.1016/j.envpol.2010.02.003
    CAO X, MA L, LIANG Y, et al. Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar[J]. Environ Sci Technol, 2011, 45(11):4884-4889. doi: 10.1021/es103752u
    TIAN J, YI S, IMHOFF P T, et al. Biochar-amended media for enhanced nutrient removal in stormwater facilities[C]//World Environmental and Water Resources Congress 2014: Water without Borders. Portland: American Society of Civil Engineers, 2014: 197-208.
    NCDWQ. Stormwater best management practices manual[S]. Raleigh: N.C. Department of Environmental and Natural Resources, Divison of Water Quality, 2007.
    SIMUNEK J, GENUCHTEN M T V. The DISC computer software for analyzing tension disc infiltrometer data by parameter estimation[M]. Riverside:U.S.Salinity Laboratory, 2000:1-4.
    OUYANG L, WANG F, TANG J, et al. Effects of biochar amendment on soil aggregates and hydraulic properties[J]. Journal of Soil Science and Plant Nutrition, 2013, 13(4):991-1002. http://www.cabdirect.org/abstracts/20143037678.html
    JIANG Y, SHAO M. Effects of soil structural properties on saturated hydraulic conductivity under different land-use types[J]. Soil Research, 2014, 52(4):340. doi: 10.1071/SR12309
    YANG H, DICK W A, MCCOY E L, et al. Field evaluation of a new biphasic rain garden for stormwater flow management and pollutant removal[J]. Ecological Engineering, 2013, 54:22-31. doi: 10.1016/j.ecoleng.2013.01.005
    LUCAS W, GREENWAY M. Hydraulic response and nitrogen retention in bioretention mesocosms with regulated outlets:Part Ⅰ, hydraulic response[J]. Water Environment Research, 2011, 83(2):692-702. http://www.ncbi.nlm.nih.gov/pubmed/21905406
    BECK D A, JOHNSON G R, SPOLEK G A. Amending greenroof soil with biochar to affect runoff water quantity and quality[J]. Environ Pollut, 2011, 159(8/9):2111-2118. https://www.sciencedirect.com/science/article/pii/S0269749111000443
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  405
  • HTML全文浏览量:  177
  • PDF下载量:  155
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-11
  • 刊出日期:  2018-04-25

目录

    /

    返回文章
    返回