Impact of Interacted Hazardous Actions on Injury Severity in Both-at-Fault Crashes
-
摘要: 为了明确交互危险驾驶行为与双责事故严重程度的关系,从驾驶行为方面有效减轻双责事故的危害后果,结合双责事故的特点及各统计分析模型的适用性,采用广义有序logit模型鉴别各种危险驾驶行为交互作用对双责事故受伤严重程度的影响作用,并分析危险驾驶行为对不同等级受伤严重程度的影响规律以及影响机理.研究结果表明:双方驾驶员均偏离车道、双方均分心驾驶、一方超速另一方让行失败、一方超速另一方鲁莽驾驶以及一方违反交通规则另一方让行失败的交互危险行为会显著增加事故严重程度.根据分析结果,提出应对驾驶员做好宣传教育工作促使其养成良好的驾驶行为习惯,并结合超速监测系统、电子执法系统等技术手段加强对危险驾驶行为的监控.
-
关键词:
- 交互危险行为 /
- 双责事故 /
- 广义有序logit模型 /
- 伤害严重程度
Abstract: In order to understand the relationship between interacted hazardous actions and the injury severity in both-at-fault crashes, and alleviate the crash injury from the perspective of driving behaviour, the generalized ordered logit model was adopted by combining the characteristics of both-at-fault crashes and the applicability of each statistical model. This enabled the identification of the effects of the interaction of various dangerous driving behaviours on the severity of both-at-fault crashes. In addition, the influence of dangerous driving on the severity of injuries was also analysed. The results indicated that the effects of both drivers driving left of centre, driving carelessly, speeding and failing to yield, speeding combined with reckless driving and failing to yield, and disobeying traffic rules increased the possibility of severe injuries. The analytic results indicated the need for enhancing driving education programs to promote safe driving, and monitoring hazardous actions using technological tools such as monitoring speed limits and employing electronic police systems. -
表 1 变量的定义与描述性统计
Table 1. Definition and descriptive statistics of the variables
变量 描述 双责事故 单责事故 期望 标准差 期望 标准差 事故严重程度 轻伤=1, 中伤=2, 死亡或重伤=3 — — — — 超速 是否存在超速, 是=1, 否=0 0.210 0.407 0.059 0.235 速度过慢 是否存在速度过慢, 是=1, 否=0 0.020 0.139 0.001 0.031 让行失败 是否存在让行失败, 是=1, 否=0 0.381 0.486 0.319 0.466 违反交通控制 是否存在违反交通控制, 是=1, 否=0 0.182 0.386 0.106 0.308 偏离车道 是否存在偏离车道, 是=1, 否=0 0.019 0.135 0.020 0.139 超车不当 是否存在超车不当, 是=1, 否=0 0.030 0.172 0.006 0.080 车道使用不当 是否存在车道使用不当, 是=1, 否=0 0.113 0.317 0.022 0.145 转向不当 是否存在转向不当, 是=1, 否=0 0.039 0.193 0.019 0.138 发送信号有误 是否存在发送信号有误, 是=1, 否=0 0.042 0.201 0.002 0.041 倒车不当 是否存在倒车不当, 是=1, 否=0 0.018 0.134 0.004 0.067 跟车过近 是否存在跟车过近, 是=1, 否=0 0.246 0.431 0.349 0.477 鲁莽驾驶 是否存在鲁莽驾驶, 是=1, 否=0 0.014 0.119 0.008 0.087 分心驾驶 是否存在分心驾驶, 是=1, 否=0 0.050 0.218 0.041 0.198 表 2 双责事故与单责事故受伤严重程度对比
Table 2. Comparison of severity of injuries between both-at-fault and one-at-fault crashes
严重程度 双责事故 单责事故 Δ百分比/% 优势比(双责vs单责) 数量 百分比/% 数量 百分比/% 死亡或重伤 200 8.69 181 6.78 1.92 1.28 中伤 534 23.21 547 20.48 2.73 1.13 轻伤 1 567 68.10 1 943 72.74 -4.64 0.94 注:Δ百分比为事故严重程度在双责事故中所占百分比减去其在单责事故中所占百分比. 表 3 双责和单责事故的模型回归结果
Table 3. Modelling results for both-at-fault and one-at-fault crashes
变量 行为 双责事故 单责事故 参数估计 标准差 p值 参数估计 标准差 p值 α1 截距 -1.109 -0.075 <0.001 -1.522 0.074 <0.001 β1 超速 0.223 0.111 0.045 1.010 0.183 <0.001 让行失败 0.398 0.094 <0.001 0.857 0.104 <0.001 违反交通控制 0.256 0.117 0.029 0.823 0.151 <0.001 偏离车道 1.099 0.312 <0.001 1.345 0.255 <0.001 鲁莽驾驶 1.169 0.357 0.001 1.723 0.456 <0.001 分心驾驶 0.695 0.200 <0.001 0.910 0.232 <0.001 α2 截距 -2.565 0.125 <0.001 -3.400 0.161 <0.001 β2 超速 0.284 0.181 0.115 1.750 0.275 <0.001 让行失败 -0.079 0.165 0.633 0.829 0.209 <0.001 违反交通控制 0.036 0.207 0.862 1.119 0.268 <0.001 偏离车道 1.794 0.341 <0.001 2.138 0.334 <0.001 鲁莽驾驶 1.450 0.407 <0.001 2.995 0.484 <0.001 分心驾驶 1.003 0.267 <0.001 1.309 0.372 <0.001 表 4 基于交互危险行为的双责事故模型回归结果
Table 4. Modelling results for both-at-fault crashes based on interacted hazardous actions
变量 行为 参数估计 标准差 p值 95%置信区间 α1 截距 -0.878 0.050 <0.001 [-0.976, -0.781] β1 偏离车道 & 偏离车道* 1.976 0.668 0.003 [0.666, 3.287] 分心驾驶 & 分心驾驶 0.791 0.420 0.060 [-0.033, 1.615] 超速 & 让行失败* 0.669 0.165 <0.001 [0.345, 0.993] 超速 & 分心驾驶 15.710 831.324 0.985 [-1 613.655, 1 645.076] 让行失败 & 违反交通控制* 0.590 0.170 0.001 [0.257, 0.924] α1 截距 -2.433 0.083 <0.001 [-2.596, -2.269] β2 偏离车道 & 偏离车道* 2.096 0.591 <0.001 [0.937, 3.255] 分心驾驶 & 分心驾驶* 1.152 0.512 0.025 [0.148, 2.156] 超速 & 让行失败 0.407 0.258 0.114 [-0.098, 0.913] 超速 & 分心驾驶* 2.432 1.003 0.015 [0.465, 4.399] 让行失败 & 违反交通控制 -0.038 0.312 0.902 [-0.650, 0.573] 注: & 表示两种驾驶行为交互; *表示显著影响(p<0.05). 表 5 模型伪R2检验
Table 5. Pseudo R2 test of the modelling results
模型 双责事故 单责事故 基于交互危险行为的双责事故 广义有序logit 0.020 8 0.037 6 0.014 9 有序logit 0.014 5 0.032 3 0.012 6 表 6 双责事故严重程度各显著影响因素的边际效应
Table 6. Marginal effects of significant factors on the severity of injuries in both-at-fault crashes
行为 轻伤 中伤 死亡或重伤 偏离车道 & 偏离车道 -0.453 0.110* 0.343* 分心驾驶 & 分心驾驶 -0.189 0.049 0.141* 超速 & 让行失败 -0.157 0.121* 0.037 超速 & 鲁莽驾驶 -0.684 0.257 0.428* 让行失败 & 违反交通控制 -0.138 0.141* -0.003 注: & 表示两种驾驶行为交互; *表示显著影响(p<0.05). -
贾雄文.双责事故交通安全分析[D].成都: 西南交通大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10613-1016154934.htm Michigan Department of Transportation. Michigan crash data (2012-2014).[s.n.]: Michigan Department of Transportation, 2015. 袁秀林.机动车交通事故责任归责原则探析[D].大连: 大连海事大学, 2013. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2503287 胡东.论道路交通事故损害赔偿责任[D].哈尔滨: 黑龙江大学, 2002. 董石.道路交通事故损害赔偿责任主体之认定[D].长春: 长春工业大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10183-2010032768.htm JIANG X, QIU Y, LYLES R W, et al. Issues with using police citations to assign responsibility in quasi-induced exposure[J]. Safety Science, 2012, 50(4):1133-1140. doi: 10.1016/j.ssci.2011.09.021 WILLIAMS A F, SHABANOVA V I. Responsibility of drivers, by age and gender, for motor-vehicle crash deaths[J]. Journal of Safety Research, 2003, 34(5):527-531. doi: 10.1016/j.jsr.2003.03.001 CHIOU Y C, HWANG C C, CHANG C C, et al. Modeling two-vehicle crash severity by a bivariate generalized ordered probit approach[J]. Accident Analysis & Prevention, 2013, 51:175-184. http://www.sciencedirect.com/science/article/pii/S000145751300273X 张万安, 肖跃秀.机动车驾驶人道路交通违法行为的博弈分析[J].交通运输系统工程与信息, 2012, 12(增刊1):86-90. http://d.old.wanfangdata.com.cn/Conference/8056620ZHANG Wan'an, XIAO Yuexiu. Causes and countermeasures of motor vehicle drivers violations analysis based on game theory[J]. Journal of Transportation Systems Engineering and Information Technology, 2012, 12(Sup.1):86-90. http://d.old.wanfangdata.com.cn/Conference/8056620 黎美清, 罗义学, 杜岩, 等.机动车驾驶员心理健康状况与违法驾驶行为的关系[J].医学与社会, 2010, 23(5):79-81. doi: 10.3870/YXYSH.2010.05.030LI Meiqing, LUO Yixue, DU Yan, et al. Investigation of the relationship between the mental health of automobile drivers and the traffic violations[J]. Medicine and Society, 2010, 23(5):79-81. doi: 10.3870/YXYSH.2010.05.030 LEE C, LI X. Analysis of injury severity of drivers involved in single-and two-vehicle crashes on highways in ontario[J]. Accident Analysis & Prevention, 2014, 71:286-295. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=55c8810deb6fc4e3eb79f1c326cc5c8b WOOD J S, DONNELL E T, FARISS C J. A method to account for and estimate underreporting in crash frequency research[J]. Accident Analysis & Prevention, 2016, 95:57-66. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f84b60daa0593762fa983a853fd720ac LIU J, KHATTAK A J, RICHARDS S H, et al. What are the differences in driver injury outcomes at highway-rail grade crossings? Untangling the role of pre-crash behaviors[J]. Accident Analysis & Prevention, 2015, 85:157-169. http://www.sciencedirect.com/science/article/pii/S0001457515300610 HAQVERDI M Q, SEYEDABRISHAMI S, GROEGER J A. Identifying psychological and socio-economic factors affecting motorcycle helmet use[J]. Accident Analysis & Prevention, 2015, 85:102-110. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5b7d1b69667eb93accd3f9f1f66d2a8d STIPANCIC J, ZANGENEHPOUR S, MIRANDA-MORENO L, et al. Investigating the gender differences on bicycle-vehicle conflicts at urban intersections using an ordered logit methodology[J]. Accident Analysis & Prevention, 2016, 97:19-27. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9ae5045efadf4b81a52c39ccecb01072 马壮林, 张祎祎, 杨杨, 等.公路隧道交通事故严重程度预测模型研究[J].中国安全科学学报, 2015, 25(5):75-79. http://d.old.wanfangdata.com.cn/Periodical/zgaqkxxb201505013MA Zhuanglin, ZHANG Yiyi, YANG Yang, et al. Research on models for predicting severity of traffic accident in highway tunnel[J]. China Safety Science Journal, 2015, 25(5):75-79. http://d.old.wanfangdata.com.cn/Periodical/zgaqkxxb201505013 WILLIAMS R. Generalized ordered logit/partial proportional odds models for ordinal dependent variables[J]. Stata Journal, 2006, 6(1):58. doi: 10.1177/1536867X0600600104 章国鹏.信号交叉口左弯待转区的安全研究[D].成都: 西南交通大学, 2015. 信号交叉口左弯待转区的安全研究[ 尹朋.交通事故车辆碰撞速度分析及计算软件开发[D].淄博: 山东理工大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10433-2010144535.htm HARBLUK J L, NOY Y I, TRBOVICH P L, et al. An on-road assessment of cognitive distraction:Impacts on drivers' visual behavior and braking performance[J]. Accident Analysis & Prevention, 2007, 39(2):372-379. http://www.ncbi.nlm.nih.gov/pubmed/17054894 张丙干.高速公路机动车超速监测系统设计与实现[D].成都: 电子科技大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10614-1013148164.htm 蒋贤才, 黄科, 汪贝, 等.电子执法环境下交通违法行为影响因素分析[J].哈尔滨工业大学学报, 2013, 45(8):84-89. http://d.old.wanfangdata.com.cn/Periodical/hebgydxxb201308015JIANG Xiancai, HUANG Ke, WANG Bei, et al. Analysis of affecting factors on traffic violation under the environment of electronic enforcement[J]. Journal of Harbin Institute of Technology, 2013, 45(8):84-89. http://d.old.wanfangdata.com.cn/Periodical/hebgydxxb201308015
计量
- 文章访问数: 403
- HTML全文浏览量: 152
- PDF下载量: 161
- 被引次数: 0