Robust Control of the Air Conditioning System of an Electric Vehicle with Actuator Fault
-
摘要: 为了保证空调系统在部分故障的条件下,依然满足系统性能要求正常工作,通过对电动汽车空调系统分析,依据空调执行过程的故障模型,建立考虑执行器故障的空调不确定系统,利用状态观测器对系统状态进行了观测.采用线性矩阵不等式LMI(linear matrix inequalities),设计了能够对空调执行器故障进行补偿的H∞状态反馈鲁棒控制器,并证明了该控制器的稳定性.仿真实验表明,在有故障和无故障模式下的观测误差最大分别为0.1%和0.6%,满足系统的观测需求;与未考虑执行器故障的电动汽车空调H∞控制器相比,在10 Hz以下频段,考虑执行器故障的H∞控制方式可有效地抑制系统输入端所带来的干扰.Abstract: This paper is concerned with the development of an actuator fault model in the process of operation of electrical vehicle air conditioning system and the design of a state observer to observe the state of this system. Then established the uncertain system of air conditioning system based on linear matrix inequalities to design a state feedback H∞ robust controller that can compensate for the actuator fault of an automobile air conditioning system and stabilize the controller. The state feedback controller is designed through simulation experiments under trouble-free and faulty modes. The observation error under each mode was 0.1% and 0.6%, which satisfied the demand of system observation, compared with the air conditioner H∞ controller, which does not consider actuator failures. The state feedback controller could effectively suppress jamming at medium frequencies and frequencies lower than 10 Hz. Finally, the control strategy is verified by simulating a closed-loop system using the two types of controllers.
-
表 1 故障模式
Table 1. Failure mode
序号 故障模式 下界 上界 σ(i, t) 1 正常 1 1 0 2 中断 0 0 0 3 部分失效 >0 <1 0 4 偏移 >0 <1 1 5 卡死 0 0 1 表 2 各状态的稳态工作点
Table 2. Static working point of each state
状态参数 稳态工作点 Nc/(r·min-1) 2 000 α/% 20 αin/% 20 ṁea/(m·s-1) 4 Troom/℃ 26 Tout/℃ 35 pe/kPa 172 he1/(kJ·kg-1) 260.8 SH/℃ 17.2 Tea, out/℃ 12 -
JETTE I, ZAHEER-UDDIN M, FAZIO P. PI-control of dual duct systems:manual tuning and control loop interaction[J]. Energy conversion and management, 1998, 39(14):1471-1482. doi: 10.1016/S0196-8904(98)00020-X QIAN W, PENG F Z, CHA H. Trans-z-source inverters[J]. IEEE transactons on Power Electronics, 2011, 26(12):3453-3463. doi: 10.1109/TPEL.2011.2122309 付龙海, 李蒙.基于PID神经网络解耦控制的变风量空调系统[J].西南交通大学学报, 2005, 40(1):13-17. doi: 10.3969/j.issn.0258-2724.2005.01.004FU Longhai, LI Meng. Variable-air-volume air-conditioning system based on PID-ANN decoupling control technology[J]. Journal of Southwest Jiaotong University, 2005, 40(1):13-17. doi: 10.3969/j.issn.0258-2724.2005.01.004 HOSOZ M, ERTUNC H M. Artificial neural network analysis of an automobile air conditioning system[J]. Energy Conversion and Management, 2006, 47(11):1574-1587. http://www.sciencedirect.com/science/article/pii/S0196890405002001 ZHANG Q, CANOVA M. Modeling and output feedback control of automotive air conditioning system[J]. International Journal of Refrigeration, 2015, 58:207-218. doi: 10.1016/j.ijrefrig.2015.06.005 ZHANG Q, CANOVA M, RIZZONI G. Sliding mode control of an automotive air conditioning system[C]//American Control Conference.[S.l.]: IEEE, 2013: 5748-5753. KEIR M C, ALLEYNE A G. Dynamic modeling, control, and fault detection in vapor compression systems[R].[S.l.]: University of Illinois at Urbana-Champaign, 2006. 任春晖.基于故障树分析的汽车空调系统故障诊断研究[J].中国农机化学报, 2013, 34(5):182-184. doi: 10.3969/j.issn.2095-5553.2013.05.045REN Chunhui. Research of A/C Fault diagnosis based on failure tree analysis[J]. Journal of Chinese Agricultural Mechanization, 2013, 34(5):182-184. doi: 10.3969/j.issn.2095-5553.2013.05.045 ZHANG Q, CANOVA M. Fault detection and isolation of automotive air conditioning systems using first principle models[J]. Control Engineering Practice, 2015, 43:49-58. doi: 10.1016/j.conengprac.2015.06.005 刘占峰, 宋力, 赵丹平.汽车空调[M].北京:北京大学出版社, 2011:22-65. 吴伟军, 钟建法, 彭仟能.并联涡旋式压缩机在空气源热泵机组中的应用分析[J].制冷与空调, 2013(1):55-58. http://d.old.wanfangdata.com.cn/Periodical/zlykt-bj201301014WU Weijun, ZHONG Jianfa, PENG Qianneng. Application analysis of parallel scroll compressors for air-source heat pump chiller[J]. Refrigeration and Air Conditioning, 2013(1):55-58. http://d.old.wanfangdata.com.cn/Periodical/zlykt-bj201301014 MCKINLEY T L, ALLEYNEA G. An advanced nonlinear switched heat exchanger model for vapor compression cycles using the moving-boundary method[J]. International Journal of Refrigeration, 2008, 31(7):1253-1264. doi: 10.1016/j.ijrefrig.2008.01.012 FARZANEH Y, TOOTOONCHI A A. Intelligent control of thermal comfort in automobile[C]//2008 IEEE Conference on Cybernetics and Intelligent Systems.[S.l.]: IEEE, 2008: 510-514. YANG Xiaozheng, YANG Guanghong. Robust adaptive fault-tolerant compensation control with actuator failures and bounded disturbances[J]. Acta Automatica Sinica, 2009, 35(3):305-309. http://www.cqvip.com/Main/Detail.aspx?id=29771817 陈跃鹏, 周祖德.广义系统的鲁棒控制与容错控制[M].北京:科学出版社, 2010:41-46. 金小峥, 杨光红, 常晓恒, 等.容错控制系统鲁棒H∞和自适应补偿设计[J].自动化学报, 2013, 39(1):31-42. http://cdmd.cnki.com.cn/Article/CDMD-10288-2009214517.htmJin Xiaozheng, Yang Guanghong, Chang Xiaoheng, et al. Robust fault-tolerant control with adaptive compensation[J]. Acta Automatica Sinica, 2013, 39(1):31-42. http://cdmd.cnki.com.cn/Article/CDMD-10288-2009214517.htm