• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基床翻浆冒泥土的物理力学性质

聂如松 冷伍明 粟雨 郭一鹏

聂如松, 冷伍明, 粟雨, 郭一鹏. 基床翻浆冒泥土的物理力学性质[J]. 西南交通大学学报, 2018, 53(2): 286-295. doi: 10.3969/j.issn.0258-2724.2018.02.010
引用本文: 聂如松, 冷伍明, 粟雨, 郭一鹏. 基床翻浆冒泥土的物理力学性质[J]. 西南交通大学学报, 2018, 53(2): 286-295. doi: 10.3969/j.issn.0258-2724.2018.02.010
NIE Rusong, LENG Wuming, SU Yu, GUO Yipeng. Physical and Mechanical Properties of Mud Pumping Soils in Railway Subgrade Bed[J]. Journal of Southwest Jiaotong University, 2018, 53(2): 286-295. doi: 10.3969/j.issn.0258-2724.2018.02.010
Citation: NIE Rusong, LENG Wuming, SU Yu, GUO Yipeng. Physical and Mechanical Properties of Mud Pumping Soils in Railway Subgrade Bed[J]. Journal of Southwest Jiaotong University, 2018, 53(2): 286-295. doi: 10.3969/j.issn.0258-2724.2018.02.010

基床翻浆冒泥土的物理力学性质

doi: 10.3969/j.issn.0258-2724.2018.02.010
基金项目: 

中国铁路总公司科技研究开发计划资助项目 2015G006-F

中国神华集团科研专项 SHGF-14-55

国家自然科学基金资助项目 51678572

详细信息
    作者简介:

    聂如松(1980-), 男, 副教授, 博士, 研究方向为铁路路基工程与桥梁桩基础, E-mail:nierusong97@163.com

    通讯作者:

    冷伍明(1964-), 男, 教授, 博士, 研究方向为岩土工程, E-mail:lwm123456@126.com

  • 中图分类号: U216.418

Physical and Mechanical Properties of Mud Pumping Soils in Railway Subgrade Bed

  • 摘要: 随着列车提速和轴重大幅增加,基床出现翻浆冒泥病害的几率加大.为了进一步研究翻浆冒泥发生机理和探究其发生条件,系统研究了60多组翻浆冒泥实例,分析了翻浆冒泥土的颗粒组成、可塑性指标、渗透性及矿物成分等物理力学性质.研究结果表明:翻浆冒泥土中,绝大部分黏粒含量大于20%、粉粒含量大于20%,黏粒含量大于30%和粉粒含量大于40%的土所占数量最多;翻浆冒泥土中粉粒的含量一般要高于黏粒含量;翻浆冒泥土(主要包括砂黏土、粉质黏土、黏土和部分低液限粉质黏土)液限大于23%,塑性指数大于6.5;翻浆冒泥土渗透系数小于1.0×10-5 m/s;翻浆冒泥土的渗透系数与细颗粒含量之间存在较好的负指数关系.

     

  • 图 1  基床土颗粒三因分类图

    Figure 1.  Particle size distribution of subgrade bed soils in mud pumping

    图 2  翻浆冒泥土细粒组成分布

    Figure 2.  Composition of fine particles in mud pumping soils

    图 3  文献[6]的翻浆冒泥土的可塑性指标范围

    Figure 3.  Plasticity chart of mud pumping soils suggested by Reference [6]

    图 4  翻浆冒泥土的可塑性指标范围

    Figure 4.  Plasticity chart of mud pumping soils

    图 5  渗透系数k与细颗粒含量P的关系

    Figure 5.  Relation between the permeability coefficient k and fine particle content P

    表  1  主要重载国家重载列车轴重和车长

    Table  1.   Typical heavy haul railway freight trains including axle loads and length worldwide

    国家 轴重/t 列车长(车辆数)/辆
    美国与加拿大 33.0 130~140
    澳大利亚 35.0~40.0 200~240
    南非 26.0~30.0 200~216
    巴西 27.5~32.5 330
    瑞典 30.0 68
    中国 25.0~27.0 210
    下载: 导出CSV

    表  2  翻浆冒泥土的物理性质

    Table  2.   Physical properties of mud pumping soils

    序号 土名 颗粒组成及矿物成分 液限
    WL/%
    塑性指数Ip 含水率w/% 渗透系数k/
    (×10-6cm·s-1)
    自由膨胀率Fs/% 饱和度
    Sr/%
    密度ρ/
    (g·cm-3)
    土粒相对密度 孔隙比e 参考文献
    1 非有机质黏土 P0.420=93.7%,
    P0.074=77.0%
    43.0 21.0 13.0 2.81 [25]
    2 粉质黏土 细颗粒含量P=10.0% 49.0 26.0 2.74 [13]
    3
    4
    砂土 P(砂=80.0%, 粉粒和黏粒=20.0%) 45.0
    40.0
    27.0
    21.0
    [26]
    5
    6
    7
    黏土 48.0
    45.0
    48.0
    30.0
    22.0
    29.0
    [27]
    8 超固结海洋钙质黏土 P0.063=95.0% 44.0 24.0 [28]
    9 黄色粉质低液限黏土 P(粉粒=60.0~70.0%,
    黏粒=20.0%~26.0%,
    砂粒=12.0%)
    25.4 9.1 [29]
    10 棕色粉质低液限黏土 28.4 9.5
    11 黏土 P(粉粒=62.0%,
    黏粒=37.0%)
    44.2 23.6 3.40
    12 火山灰黏土 P(粉粒=50.6%,
    黏粒=46.7%)
    49.4 21.7 2.71 [30]
    13 膨胀土 P(砂粒=8.3%~24.6%,
    粉粒=42.6%~63.8%,
    黏粒=23.2%~39.2%)
    56.3~60.5 38.6~42.5 81.6 [31]
    14 膨胀土 伊利石为主,
    少量高岭石,
    微量蒙脱石
    P(砂粒=8.2%,
    粉粒=49.8%,
    黏粒=42.0%)
    [32]
    15 P(砂粒=11.5%,
    粉粒=54.0%,
    黏粒=34.5%)
    36.5 20.0 22.5 39.0~70.0 82.0 1.86 0.65
    16 P(砂粒=7.5%,
    粉粒=47.5%,
    黏粒=45.0%)
    40.6 20.5 21.1 35.0~80.0 80.2 1.98 0.79
    17 P(砂粒=35.5%,
    粉粒=44.3%,
    黏粒=20.2%)
    31.0 14.6 24.6 49.0 83.0 1.89 0.80
    18 39.0 20.0 19.4 30.0~50.0 74.4 1.87 0.79
    19 35.3 15.3 19.4 49.0 87.7 2.03 0.61
    20 38.0 15.5 22.9 49.0 71.6 1.86 0.87
    21 43.8 21.3 23.0 7.7~77.0 72.7 1.87 0.88
    22 中等膨胀性土 蒙脱石含量=24.36% 45.5 20.1 80.0 [33]
    23 弱膨胀性土 蒙脱石含量=16.7% 49.5 19.0 51.0
    24 黏土 P(粉粒>50.0%,
    黏粒>20.0%)
    158.0 70.0 2.46 2.22
    25 75.0 33.0 0.45 2.66 [34]
    26 53.0 23.0 0.48 2.68
    27 黏土 主要矿物成份为拜来石、伊利石, 高岭土占有一定的比例 44.1 20.1 29.0 [24]
    28 黏土 土渗透性差, 亲水性强,
    遇水易膨胀软化,
    粉黏粒含量大于70.0%,
    矿物成分以高岭石为主
    >12.0 >60.00 [6]
    29 中膨胀性土 P(黏粒=87.0%) 60.0 23.0 75.0 2.62 [35]
    30 黏土 P(黏粒>87.9%) 49.0 19.5
    31 黏土 36.1 20.7 22.5 1.85 0.69 [36]
    32 38.2 22.9 19.0
    33 36.2 20.8 21.3 29.0 1.97 0.69
    34 35.4 18.7 23.6 1.87 0.71
    35 33.6 18.0 22.4 33.0 1.93 0.74
    36 34.9 20.2 23.4 36.0 1.95 0.77
    37 砂黏土 P(砾粒=43.6%,
    砂粒=45.9%, 粉粒=7.6%, 黏粒=3.0%)
    26.9 19.1 21.5 368.00 17.0 100 0.49 [37]
    39 P(砾粒=25.9%,
    砂粒=49.5%, 粉粒=23.6%, 黏粒=15.5%)
    26.9 17.9 17.0 670.00 29.0 88.7 0.52
    39 砂土 P(砾粒=11.4%, 砂粒=61.1%, 粉粒= 9.0%, 黏粒=4.0%) 28.6 6.5 20.1 386.00 100.0 0.53
    40 黏土 P(砂粒=19.0%, 粉粒= 44.0%, 黏粒=37.0%) 39.5 17.6 1.31~3.60 76.2 0.73
    41 砂土 P(砂粒=13.0%, 粉粒= 49.2%, 黏粒=44.0%) 31.0 14.2 84.0 0.80
    42 粉黏土 P(砂粒=10.0%, 粉粒= 46.0%, 黏粒=44.0%) 36.2 16.0 1.50 85.1 0.63
    43 28.0 15.0 15.3* 0.05 12.2 1.77*
    44 砂土 P(砾粒=26.5%,
    砂粒=55.4%, 粉粒= 7.3%, 黏粒=2.8%)
    23.7 18.2 13.5 368.00 22.0 100.0 0.32
    45 P(砾粒=32.3%, 砂粒=59.7%, 粉粒= 5.4%, 黏粒=2.6%) 25.71 14.9 900.00 25.0 74.0 0.54
    46 黏土 P(砂粒=15.0%, 粉粒= 45.0%, 黏粒=40.0%) 43.8 21.3 15.80~76.30 72.2 0.88
    47
    48
    弱膨胀性土 28.0
    24.0
    13.0
    13.0
    0.05
    0.05
    12.2
    12.3
    [38]
    49 4处黏土,
    5处砂黏土
    32.6~34.3 14.1~17.6 [23]
    50 中等膨胀性土 P(粉黏粒>95.0%) 28.0~52.6 14.0~27.1 0.95~10.50 42.0~65.0 [39]
    51 黏土 主要是蒙脱石和伊利石, 以蒙脱石为主 31.8 15.4 [40]
    52 44.7 23.7
    53 39.0 20.8
    54 35.0 16.1
    55 33.5 15.2
    56 33.0 15.7
    57 35.4 16.2
    58 33.7 18.2
    59 粉质黏土 细粒含量<0.08 mm=95.0% 27.0 11.0 16.0* 33.00~139.00 1.78* [16]
    60 砂土 P(砾粒=8%, 砂粒= 82.0%, 粉粒=10.0%) 27.8 46.5 1.45 [41]
    61 粉质黏土 25.0 7.4 78.0 [42]
    62 低液限粉质黏土 23.1~23.1 7.4 16.0~-29.6 1.88~1.90* [43]
    63 粉质黏土 P(砂粒=15.6%, 粉粒= 78.4%, 黏粒=6.0%) 32.0 12.0 16.8 1.68 2.72 [44]
    64 P(砂粒=1.6%, 粉粒= 97.4%, 黏粒=1.0%) 32.0 14.0 24.5 1.63 2.69
    注:P为质量百分数,P0.420P0.074P0.063分别指颗粒粒径小于0.420、0.074 mm和0.063 mm的质量百分数; 黏粒指粒径小于0.002 mm的颗粒; 粉粒指粒径大于0.002 mm小于0.050 mm的颗粒; 砂粒指粒径大于0.050 mm小于2.000 mm的颗粒; 砾粒指粒径大于2.000 mm的颗粒; *表示最优含水率或最大干密度.
    下载: 导出CSV
  • SELIG E T, WATERS J M. Track geotechnology and substructure management[M]. London:Thomas Telford, 1994:8-1-8-50.
    杨志浩.重载铁路翻浆冒泥病害机理研究[D].石家庄: 石家庄铁道大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10107-1015424499.htm
    FELDMAN F, NISSEN D. Alternative testing method for the measurement of ballast fouling: percentage void Contamination[C]//Cost Efficient Railways Through Engineering (CORE 2002).Wollongong: [s.n.], 2002: 10-13. https://trid.trb.org/view/1317346
    INDRARATNA B, SU L, RUJIKIATKAMJORN C. A new parameter for classification and evaluation of railway ballast fouling[J]. Canadian Geotechnical Journal, 2011, 48(2):322-326. doi: 10.1139/T10-066
    徐旸, 高亮, 井国庆, 等.脏污对道床剪切性能影响及评估指标的离散元分析[J].工程力学, 2015, 32(8):96-102. http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201508015.htm

    XU Yang, GAO Liang, JING Guoqing, et al. Shear behavior analysis of fouled railroad ballast by DEM and its evaluation index[J]. Engineering Mechanics, 2015, 32(8):96-102. http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201508015.htm
    杨若芳, 杨灿文.防治翻浆冒泥新技术[M].北京:中国铁道出版社, 1989:1-14.
    China Railway Corporation. The annual report of railway subgrade detection in 2013[R]. Beijing: China Railway Publishing House, 2013.
    VAN W A. Rigid pavement pumping: (1) subbase erosion and (2) economic modeling: informational report[R/OL]. [2016-09-20]. http://dx.doi.org/10.5703/1288284314094.
    ALOBAIDI I, HOARE D J. Factors affecting the pumping of fines at the subgrade subbase interface of highway pavements:a laboratory study[J]. Geosynthetics International, 1994, 1(2):221-259. doi: 10.1680/gein.1.0010
    ALOBAIDI I, HOARE D J. The development pore water pressure at the subgrade-subbase interface of a highway pavement and its effect on pumping of fines[J]. Geotexitiles and Geomembranes, 1996, 14(2):111-135. doi: 10.1016/0266-1144(96)84940-5
    ALOBAIDI I, HOARE D J. The role of geotextile reinforcement in the control of pumping at the subgrade-subbase interface of highway pavements[J]. Geosynthetics International, 1998, 5(6):619-636. doi: 10.1680/gein.5.0138
    ALOBAIDI I, HOARE D J. Qualitative criteria for anti-pumping geocomposites[J]. Geotextiles and Geomembranes, 1998, 16(4):221-245. doi: 10.1016/S0266-1144(98)00012-0
    ALOBAIDI I, HOARE D J. Mechanisms of pumping at the subgrade-subbase interface of highway pavements[J]. Geosynthetics International, 1999, 6(4):241-259. doi: 10.1680/gein.6.0152
    TAKATOSHI I. Measure for the stabilization of railway earth structure[R]. Tokyo: Japan Railway Technical Service, 1997.
    ENG SEW A. Low cost monitoring system to diagnose problematic rail bed: case study at a mud pumping site[D]. Cambridge: Massachusetts Institute of Technology, 2007.
    DUONG T V, CUI Y J, TANG A M, et al. Investigating the mud pumping and interlayer creation phenomena in railway sub-structure[J]. Engineering Geology, 2014, 171:45-58. doi: 10.1016/j.enggeo.2013.12.016
    DUONG T V, CUI Y J, TANG A M, et al. Physical model for studying the migration of fine particles in the railway substructure[J]. Geotechnical Testing Journal, 2014, 37(5):1-12.
    聂如松, 冷伍明, 杨奇.既有重载铁路路基检测试验与状态评估[J].铁道工程学报, 2014, 31(11):20-24. doi: 10.3969/j.issn.1006-2106.2014.11.005

    NIE Rusong, LENG Wuming, YANG Qi. Detection test and condition assessment on existing heavy hual railway subgrade[J]. Journal of Railway Engineering Society, 2014, 31(11):20-24. doi: 10.3969/j.issn.1006-2106.2014.11.005
    聂如松, 冷伍明, 杨奇.铁路路基质量检测试验对比分析[J].铁道学报, 2015, 37(1):91-96. doi: 10.3969/j.issn.1001-8360.2015.01.014

    NIE Rusong, LENG Wuming, YANG Qi. Comparison and analysis on railway subgrade quality detection tests[J]. Journal of the China Railway Society, 2015, 37(1):91-96. doi: 10.3969/j.issn.1001-8360.2015.01.014
    NIE Rusong, LENG Wuming, SU Yu, et al. Causes and mechanism of mud pumping in ballast track subgrade[C]//The 4th International Conference on Railway Engineering: the Infrastructure Construction and Maintenance of High-speed Railway and Ubran Rail Transit in Complex Environment (ICRE2016). Beijing: [s.n.], 2016: 30-31.
    LI D, HYSLIP J, SUSSMANN T, et al. Railway geotechnics[M].[S.l.]:CRC Press, 2016:108-124.
    韩自力, 张千里.既有线提速路基动应力分析[J].中国铁道科学, 2005, 26(5):1-5. doi: 10.3321/j.issn:1001-4632.2005.05.001

    HAN Zili, ZHANG Qianli. Dynamic stress analysis on speed-increase subgrade of existing railway[J]. China Railway Science, 2005, 26(5):1-5. doi: 10.3321/j.issn:1001-4632.2005.05.001
    乔连军.京通线K245~K462路基翻浆冒泥的整治[J].铁道建筑, 2006(10):75-76. doi: 10.3969/j.issn.1003-1995.2006.10.029
    杨荣兴.浙赣线红门工点翻浆冒泥的整治[J].路基工程, 1996(6):53-56. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600349227

    YANG Rongxing. Remediation of the mud pumping Red Gate Worksite[J]. Subgrade Engineering, 1996(6):53-56. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600349227
    VOOTTIPRUEX P, ROONGTHANEE J. Prevention of mud pumping in railway embankment a case study from Baeng Pra-pitsanuloke, Thailand[J]. The Journal of KMITB, 2003, 13(1):20-25.
    BOOMINTAHAN S, SRINIVASAN G R. Laboratory studies on mud pumping into ballast under repetitive rail loading[J]. Indian Geotechnical Journal, 1988, 18(1):31-47.
    RAYMOND G P. Geotextileapplication for a branch line upgrading[J]. Geotextiles and Geomembranes, 1986, 3(2):91-104. http://www.sciencedirect.com/science/article/pii/0266114486900026
    AYRES D J. Geotextiles or geomembranes in track? British railways' experience[J]. Geotextiles and Geomembranes, 1986, 3(2):129-142. http://www.sciencedirect.com/science/article/pii/026611448690004X
    谷宪明.季冻区道路冻胀翻浆机理及防治研究[D].长春: 吉林大学, 2007. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxycf201606121
    MURAMOTO K, SEKINE E, NAKAMURA T, et al. Roadbed degradation mechanism under ballastless track and its countermeasures[J]. Quarterly Report of Rtri, 2006, 47(4):222-227. doi: 10.2219/rtriqr.47.222
    倪宏革, 张令诺, 周庆坡.兖石铁路基床翻浆冒泥产生机理与整治对策分析[J].铁道建筑, 2007(2):61-63. doi: 10.3969/j.issn.1003-1995.2007.02.022
    葛如生.阳安线基床病害整治[D].成都: 西南交通大学, 2003. http://cdmd.cnki.com.cn/Article/CDMD-10613-2004020478.htm
    钟涛, 梁维新.成都东站峰前场基床翻浆冒泥原因的试验分析[J].路基工程, 1995(5):39-41. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500331572

    ZHONG Tao, LIANG Weixin. Mud pumping analysis of roadbed in front of Chengdu East Railway Station[J]. Subgrade Engineering, 1995(5):39-41. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500331572
    山田干雄, 小野一良, 孙明漳.关于产生翻浆冒泥机理的初步研究[J].路基工程, 1988(3):70-75. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000002086579
    吴新民.南昆铁路膨胀土路基翻浆冒泥病害分析与改良土试验研究[D].成都: 西南交通大学, 2007. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1131160
    易波.电阻率层析成像技术在阳安铁路翻浆冒泥探测中的应用[J].路基工程, 2013(6):150-155. doi: 10.3969/j.issn.1003-8825.2013.06.035

    YI Bo. Appliaction of resistivity tomography in detection of mud pumping along Yangpingguan-Ankang Railway[J]. Subgrade Engineering, 2013(6):150-155. doi: 10.3969/j.issn.1003-8825.2013.06.035
    赵满庆.裂隙土基床病害整治研究[D].成都: 西南交通大学, 2002. http://cdmd.cnki.com.cn/Article/CDMD-10613-2003060289.htm
    傅鹤林, 刘宝琛.路基基床翻浆冒泥病害整治的固化材料的室内试验研究[C]//中国土木工程学会第九届土力学及岩土工程学术会议论文集(下册).北京: 中国土木工程学会, 2003: 1303-1306. http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=4502316
    段铭钰.铁路路基翻浆冒泥的原因及整治措施[J].铁道技术监督, 2010(6):23-25. doi: 10.3969/j.issn.1006-9178.2010.06.010
    杨新安, 周青.铁路路基病害与动力触探试验研究[J].中国矿业大学学报, 2002, 31(4):31-35. http://d.old.wanfangdata.com.cn/Periodical/zgkydxxb200204007

    YANG Xinan, ZHOU Qing. Shanghai-Nanjing railway embankment settlement and dynamic penetration test[J]. Journal of China University of Mining & Technology, 2002, 31(4):31-35. http://d.old.wanfangdata.com.cn/Periodical/zgkydxxb200204007
    HAYASHI S, SHAHU J T. Mud pumping problem in tunnels on erosive soil deposits[J]. Geotechnique, 2000, 50(4):393-408. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=914b0f79090c33cba762731784fdeaf7
    崔新壮.交通荷载作用下黄河三角洲低液限粉土地基累积沉降规律研究[J].土木工程学报, 2012, 45(1):154-162. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201200025965

    CUI Xinzhuang. Traffic-induced settlement of subgrade of low liquid limit silt in Yellow River Delta[J]. China Civil Engineering Journal, 2012, 45(1):154-162. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201200025965
    尹成斐.朔黄铁路神池南站咽喉路基病害检测与分析[J].现代城市轨道交通, 2013(3):65-70. doi: 10.3969/j.issn.1672-7533.2013.03.019

    YIN Chengfei. Inspection and analysis on subgrade defects over station throat at Shenchi South of Shuohuang Railway[J]. Modern Ubran Transit, 2013(3):65-70. doi: 10.3969/j.issn.1672-7533.2013.03.019
    冷伍明, 聂如松, 赵春彦, 等.重载铁路桥梁和路基检测与强化技术研究: 重载铁路路基静动力性能与检测技术研究(分报告之八)[R].长沙: 中南大学, 2011.
    周锡九.铁路路基基床病害及其产生机理分析[J].北方交通大学学报, 1994, 18(1):24-28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400153669

    ZHOU Xijiu. Analysis of classification and mechanism of railway bed[J]. Journal of Northern Jiaotong University, 1994, 18(1):24-28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400153669
    伊东孝之.整治路基翻浆冒泥的措施[J].屈野威译, 周柔琴校.铁道建筑, 1980(4): 30-32.
    张云根.高速铁路基床填料物理力学特性试验分析[D].成都: 西南交通大学, 2006. http://cdmd.cnki.com.cn/Article/CDMD-10613-2008178900.htm
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  595
  • HTML全文浏览量:  204
  • PDF下载量:  211
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-30
  • 刊出日期:  2018-04-25

目录

    /

    返回文章
    返回