• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于改进加权一阶局域法的空中交通流量预测模型

王超 朱明 赵元棣

王超, 朱明, 赵元棣. 基于改进加权一阶局域法的空中交通流量预测模型[J]. 西南交通大学学报, 2018, 53(1): 206-213. doi: 10.3969/j.issn.0258-2724.2018.01.025
引用本文: 王超, 朱明, 赵元棣. 基于改进加权一阶局域法的空中交通流量预测模型[J]. 西南交通大学学报, 2018, 53(1): 206-213. doi: 10.3969/j.issn.0258-2724.2018.01.025
WANG Chao, ZHU Ming, ZHAO Yuandi. Air Traffic Flow Prediction Model Based on Improved Adding-Weighted One-Rank Local-rejion Method[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 206-213. doi: 10.3969/j.issn.0258-2724.2018.01.025
Citation: WANG Chao, ZHU Ming, ZHAO Yuandi. Air Traffic Flow Prediction Model Based on Improved Adding-Weighted One-Rank Local-rejion Method[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 206-213. doi: 10.3969/j.issn.0258-2724.2018.01.025

基于改进加权一阶局域法的空中交通流量预测模型

doi: 10.3969/j.issn.0258-2724.2018.01.025
基金项目: 

国家自然科学基金民航联合基金资助项目 U1533106

国家自然科学基金民航联合基金资助项目 U1433111

详细信息
    作者简介:

    王超(1971-), 男, 教授, 博士, 研究方向为空中交通系统仿真与分析, E-mail:wangch6972@163.com

  • 中图分类号: V355

Air Traffic Flow Prediction Model Based on Improved Adding-Weighted One-Rank Local-rejion Method

  • 摘要: 空中交通流量精准预测是实施空中交通控制和管理的重要前提.针对空中交通流量时间序列的内在混沌动力特性,研究了基于改进加权一阶局域法的混沌交通流量时间序列预测模型.首先,提出了一种临近相点演化加权的改进一阶局域预测法,并通过在预测过程中构建误差序列进行预测结果修正;其次,利用关联维数出现饱和现象验证了4组不同统计时间间隔的实测空中交通流量时间序列均存在混沌特性;最后,在对空中交通流量时间序列进行相空间重构的基础上,利用改进加权一阶局域预测方法进行了流量预测结果的对比实验.结果表明,4组空中交通流量时间序列预测精度均有提高,时间尺度为10 min的流量预测效果最好,预测相对误差减小了29.7%.

     

  • 图 1  不同时间尺度的交通流量时间序列

    Figure 1.  Traffic flow time series at different time scales

    图 2  Δt=10 min时的自相关系数函数

    Figure 2.  The auto correlative function of Traffic flow time series of 10 min

    图 3  ln Cm(r)-ln r曲线

    Figure 3.  Curve of ln Cm(r)-ln r

    图 4  关联维数随嵌入维数的变化曲线

    Figure 4.  Curve of D2(m) with different m

    图 5  空中交通流量的实际值和预测值对比

    Figure 5.  Predicted and actual values of air Traffic volume

    图 6  空中交通流量预测的平均绝对误差对比

    Figure 6.  Comparison Average absolute error of Air traffic flow prediction

    图 7  空中交通流量预测的相对误差对比

    Figure 7.  Comparison Relative error of Air traffic flow prediction

    表  1  不同时间尺度空中交通流量时间序列的时间延迟和嵌入维数

    Table  1.   Time delay and Embedding dimension of Air traffic flow time series under different time scales

    参数 Δt=10 min Δt=7 min Δt=10 min Δt=15 min
    τ/min 2 3 3 4
    m 6 9 7 4
    下载: 导出CSV
  • 耿睿, 崔德光, 徐冰.应用支持向量机的空中交通流量组合预测模型[J].清华大学学报:自然科学版, 2008, 48(7):1205-1208. http://d.old.wanfangdata.com.cn/Periodical/qhdxxb200807036

    GENG Rui, CUI Deguang, XU Bing. Support vector machine-based combinational model for air traffic forecasts[J]. Journal of Tsinghua University, 2008, 48(7):1205-1208. http://d.old.wanfangdata.com.cn/Periodical/qhdxxb200807036
    张明, 韩松臣, 黄林源.基于双重力模型和人工神经网络的空中交通流量组合预测[J].西南交通大学学报, 2009, 44(5):764-770. doi: 10.3969/j.issn.0258-2724.2009.05.025

    ZHANG Ming, HAN Songchen, HUANG Linyuan. Air traffic flow combinational forecast based on double gravity model and artificial neural network[J]. Journal of Southwest Jiaotong University, 2009, 44(5):764-770. doi: 10.3969/j.issn.0258-2724.2009.05.025
    王超, 郭九霞, 沈志鹏.基于基本飞行模型的4D航迹预测方法[J].西南交通大学学报, 2009, 44(2):295-300. doi: 10.3969/j.issn.0258-2724.2009.02.028

    WANG Chao, GUO Jiuxia, SHEN Zhipeng. Prediction of 4D trajectory based on basic flight models[J]. Journal of Southwest Jiaotong University, 2009, 44(2):295-300. doi: 10.3969/j.issn.0258-2724.2009.02.028
    吕金虎, 张锁春.加权一阶局域法在电力系统短期负荷预测中的应用[J].控制理论与应用, 2002, 19(5):767-770. http://d.old.wanfangdata.com.cn/Periodical/kzllyyy200205022

    LÜ Jinhu, ZHANG Suochun. Application of adding-weight one-rank local-region method in electric power system short-term load forecast[J]. Control Theory & Applications, 2002, 19(5):767-770. http://d.old.wanfangdata.com.cn/Periodical/kzllyyy200205022
    金玉婷.基于混沌和小波神经网络的短时交通流量预测方法研究[D].成都: 西南交通大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10613-1014251940.htm
    陈丹, 胡明华, 张洪海, 等.考虑周期性波动因素的中长期空中交通流量预测[J].西南交通大学学报, 2015, 50(3):562-568. doi: 10.3969/j.issn.0258-2724.2015.03.028

    CHEN Dan, HU Minghua, ZHANG Honghai, et al. Forecast method for medium-long term air traffic flow considering periodic fluctuation factors[J]. Journal of Southwest Jiaotong University, 2015, 50(3):562-568. doi: 10.3969/j.issn.0258-2724.2015.03.028
    张洪海, 杨磊, 别翌荟, 等.终端区进场交通流广义跟驰行为与复杂相变分析[J].航空学报, 2015, 36(3):949-961. http://d.old.wanfangdata.com.cn/Periodical/hkxb201503028

    ZHANG Honghai, YANG Lei, BIE Yi Hui, et al. Analysis on generalized following behavior and complex phase-transition law of approaching traffic flow in terminal airspace[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3):949-961. http://d.old.wanfangdata.com.cn/Periodical/hkxb201503028
    PACKARD N H, CRUTCHFIELD J P, FARMER J D. Geometry from a time series[J]. Physics Review Letters, 1980, 45(9):712. doi: 10.1103/PhysRevLett.45.712
    吕金虎, 陆君安, 陈士华.混沌时间序列分析及应用[M].武汉:武汉大学出版社, 2002:102-105.
    CONG W, HU M H. Chaotic characteristic analysis of air traffic system[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2014, 31(6):636-642. http://www.cqvip.com/QK/85388X/201406/663464141.html
    LI S M, XU X H, MENG L H. Flight conflict forecasting based on chaotic time series[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2012, 29(4):388-394. http://en.cnki.com.cn/Article_en/CJFDTOTAL-NJHY201204014.htm
    王超, 郑旭芳, 王蕾.交汇航路空中交通流的非线性特征研究[J].西南交通大学学报, 2017, 52(1):171-178. doi: 10.3969/j.issn.0258-2724.2017.01.024

    WANG Chao, ZHENG Xufang, WANG Lei. Research on nonlinear characteristics of air traffic flows on converging air routes[J]. Journal of Southwest Jiaotong University, 2017, 52(1):171-178. doi: 10.3969/j.issn.0258-2724.2017.01.024
    STROGATZ S H. Nonlinear dynamics and chaos:with applications to physics, biology, chemistry, and engineering[M]. Boulder:Westview Press, 2014:317-335.
    XUE J, SHI Z. Short-time traffic flow prediction based on chaos time series theory[J]. Journal of Transportation Systems Engineering & Information Technology, 2008, 8(5):68-72. http://www.sciencedirect.com/science/article/pii/S1570667208600409
    LAN L W, SHEU J B, HUANG Y S. Investigation of temporal freeway traffic patterns in reconstructed state spaces[J]. Transportation Research Part C Emerging Technologies, 2008, 16(1):116-136. doi: 10.1016/j.trc.2007.06.006
    TAKENS F. On the numerical determination of the dimension of an attractor[M]. Berlin:Springer, 1985:99-106.
    MAÑÉ R. On the dimension of the compact invariant sets of certain non-linear maps[M]. Berlin:Springer, 1981:230-242.
    贺国光, 马寿峰, 冯蔚东.对交通流分形问题的初步研究[J].中国公路学报, 2002, 15(4):82-85. doi: 10.3321/j.issn:1001-7372.2002.04.022

    HE Guoguang, MA Shoufeng, FENF Weidong. Preliminary study of fractals of traffic flow[J]. China Journal of Highway & Transport, 2002, 15(4):82-85. doi: 10.3321/j.issn:1001-7372.2002.04.022
    马庆禄.基于混沌理论的交通状态预测研究[D].重庆: 重庆大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10611-1012047358.htm
    KANTZ H, SCHREIBER T. Nonlinear time series analysis[M]. Cambridge:Cambridge University Press, 2004:69-72.
    GRASSBERGER P, PROCACCIA I. Measuring the strangeness of strange attractors[J]. Physica D Nonlinear Phenomena, 1983, 9(1):189-208. http://www.sciencedirect.com/science/article/pii/0167278983902981
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  494
  • HTML全文浏览量:  189
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-25
  • 刊出日期:  2018-02-25

目录

    /

    返回文章
    返回