• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

RES脉内特征的差分进化粒子群投影寻踪评价模型

朱斌 金炜东 余志斌

朱斌, 金炜东, 余志斌. RES脉内特征的差分进化粒子群投影寻踪评价模型[J]. 西南交通大学学报, 2018, 53(1): 189-196. doi: 10.3969/j.issn.0258-2724.2018.01.023
引用本文: 朱斌, 金炜东, 余志斌. RES脉内特征的差分进化粒子群投影寻踪评价模型[J]. 西南交通大学学报, 2018, 53(1): 189-196. doi: 10.3969/j.issn.0258-2724.2018.01.023
ZHU Bin, JIN Weidong, YU Zhibin. Intrapulse Feature Evaluation Model of Radar Emitter Signal Based on Differential Evolution, Particle Swarm Optimization and Projection Pursuit Algorithm[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 189-196. doi: 10.3969/j.issn.0258-2724.2018.01.023
Citation: ZHU Bin, JIN Weidong, YU Zhibin. Intrapulse Feature Evaluation Model of Radar Emitter Signal Based on Differential Evolution, Particle Swarm Optimization and Projection Pursuit Algorithm[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 189-196. doi: 10.3969/j.issn.0258-2724.2018.01.023

RES脉内特征的差分进化粒子群投影寻踪评价模型

doi: 10.3969/j.issn.0258-2724.2018.01.023
基金项目: 

国家自然科学基金资助项目 60971103

国家自然科学基金资助项目 61134002

详细信息
    作者简介:

    朱斌(1973-), 男, 副教授, 博士, 研究方向为智能信息处理, E-mail:zb8132002@163.com

    通讯作者:

    金炜东(1959-), 男, 教授, 博士, 研究方向为智能信息处理、系统优化与仿真, E-mail:wdjin@home.swjtu.edu.cn

  • 中图分类号: TN957.51

Intrapulse Feature Evaluation Model of Radar Emitter Signal Based on Differential Evolution, Particle Swarm Optimization and Projection Pursuit Algorithm

  • 摘要: 针对雷达辐射源信号脉内特征综合评估存在标准单一、缺乏客观性等问题,提出了基于群体智能的雷达辐射源信号脉内特征综合评估模型.首先,通过投影寻踪算法将雷达辐射源信号脉内特征的综合评估问题转化为有条件限制的多元非线性目标函数的优化问题;其次,通过改进的粒子群优化算法与差分进化算法的结合得到新的智能算法;最后,利用该算法实现多元非线性目标函数的优化求解.仿真结果表明:该群体智能算法对Rosenbrock测试函数的最优适应度值最小,对Rastrigrin函数和Girewank测试函数的最优适应度值为0,说明该算法的计算精度优于其他算法.同时适应度值的方差比标准粒子群算法和差分进化算法小,说明该算法的收敛性和鲁棒性较好.通过与加速遗传算法对评估问题目标函数5次优化结果的比较,本算法的计算结果没有波动,说明基于群体智能的RES脉内特征综合评估模型能够更客观、更有效地实现对RES脉内特征的综合评估.

     

  • 图 1  ADEPSO算法流程

    Figure 1.  Flow chart of ADEPSO algorithm

    图 2  RES脉内特征的ADEPSOPP评估模型

    Figure 2.  ADEPSOPP evaluation model of RES intrapulse features

    图 3  Rosenbrock函数适应度值优化曲线

    Figure 3.  Fitness optimization curve of Rosenbrock function

    图 4  Rastrigrin函数适应度值优化曲线

    Figure 4.  Fitness optimization curve of Rastrigrin function

    图 5  Girewank函数适应度值优化曲线

    Figure 5.  Fitness optimization curve of Girewank function

    表  1  基于标准测试函数的不同算法的测试结果

    Table  1.   Test results of different algorithms based on standard test functions

    测试函数 Fitness SPSO APSO DE ADEPSO
    Rosenbrock best 8.394 6.802×10-1 5.196×10-5 3.415×10-5
    worst 4.512×101 7.668 3.987 5.900×10-1
    mean 2.139×101 3.560 5.315×10-1 5.348×10-2
    Std. 1.018×101 1.939 1.378 1.136×10-1
    Rastrigrin best 2.904 3.980 7.105×10-15 0.000
    worst 2.599×101 3.084×101 9.975 7.099
    mean 1.175×101 9.916 4.732 6.273×10-1
    Std. 6.626 5.655 2.268 1.493
    Girewank best 2.219×10-3 1.110×10-16 2.373×10-4 0.000
    worst 4.432×10-2 1.160×10-8 5.662×10-2 2.517×10-2
    mean 1.836×10-2 4.291×10-10 2.094×10-2 2.891×10-3
    Std. 1.045×10-2 2.122×10-9 1.418×10-2 6.401×10-3
    下载: 导出CSV

    表  2  归一化处理后的投影数据

    Table  2.   The normalized projection data

    特征 C1 C2 C3 C4 C5 C6
    IF 0 0 0 1.000 0 0.927
    RC 1.000 1.000 1.000 0 1.000 1.000
    WGM 0.539 0.921 0.732 0.174 1.000 0
    下载: 导出CSV

    表  3  不同算法的权重优化结果

    Table  3.   The weight optimization results of different algorithms

    次数 权重计算结果
    RAGA 本文算法
    1 (0.211, 0.248, 0.232, 0.009, 0.261, 0.039) (0.226, 0.240, 0.240, 0.027, 0.240, 0.027)
    2 (0.228, 0.265, 0.233, 0.003, 0.249, 0.023) (0.226, 0.240, 0.240, 0.027, 0.240, 0.027)
    3 (0.215, 0.242, 0.233, 0.006, 0.239, 0.065) (0.226, 0.240, 0.240, 0.027, 0.240, 0.027)
    4 (0.234, 0.248, 0.199, 0.002, 0.250, 0.068) (0.226, 0.240, 0.240, 0.027, 0.240, 0.027)
    5 (0.236, 0.238, 0.243, 0.013, 0.245, 0.026) (0.226, 0.240, 0.240, 0.027, 0.240, 0.027)
    下载: 导出CSV
  • GUO Qiang, QU Zhenshen, WANG Changhong. Pulse-to-pulse periodic signal sorting features and feature extraction in radar emitter pulse sequences[J]. Journal of Systems Engineering and Electronics, 2010, 21(3):382-389. doi: 10.3969/j.issn.1004-4132.2010.03.006
    GUO Qiang, NAN Pulong, ZHANG Xiaoyu, et al. Recognition of radar emitter signals based on SVD and AF main ridge slice[J]. Journal of Communications and Networks, 2015, 17(5):491-498. doi: 10.1109/JCN.2015.000087
    白航, 赵拥军, 胡德秀.时频图像局部二值模式特征在雷达信号分类识别中的应用[J].宇航学报, 2013, 34(1):139-146. doi: 10.3873/j.issn.1000-1328.2013.01.020

    BAI Hang, ZHAO Yongjun, HU Dexiu. Radar signal recognition based on the local binary pattern feature of time-frequency image[J]. Journal of Astronautics, 2013, 34(1):139-146. doi: 10.3873/j.issn.1000-1328.2013.01.020
    ZHU Bin, JIN Weidong, YU Zhibin. Texture feature extraction of advanced radar emitter signals[J]. ICIC Express Letters, 2014, 8(9):2383-2387.
    王世强, 张登福, 毕笃彦.双谱二次特征在雷达信号识别中的应用[J].西安电子科技大学学报, 2012, 39(2):127-132. doi: 10.3969/j.issn.1001-2400.2012.02.021

    WANG Shiqiang, ZHANG Dengfu, BI Duyan. Research on recognizing the radar signal using the bispectrum cascade feature[J]. Journal of Xidian University, 2012, 39(2):127-132. doi: 10.3969/j.issn.1001-2400.2012.02.021
    邓延丽, 金炜东, 李家会, 等.基于聚集离散性与可分性的雷达信号特征评价[J].计算机应用, 2013, 33(7):1946-1949. http://d.old.wanfangdata.com.cn/Periodical/jsjyy201307038
    DENG Yanli, JIN Weidong, LI Jiahui, et al. Feature evaluation of radar signal based on aggregation, discreteness and divisibility[J]. Journal of Computer Applications, 2013, 33(7):1946-1949. doi: 10.3724/SP.J.1087.2013.01946
    邓延丽, 金炜东, 余志斌.基于类别距离和Bhattacharyya距离的雷达信号特征评价[J].计算机应用研究, 2012, 29(11):4079-4081. doi: 10.3969/j.issn.1001-3695.2012.11.019

    DENG Yanli, JIN Weidong, YU Zhibin. Feature evaluation of radar signal based on category distance and Bhattacharyya distance[J]. Application Research of Computers, 2012, 29(11):4079-4081. doi: 10.3969/j.issn.1001-3695.2012.11.019
    吴思东, 朱明, 付克昌.基于多元集对分析的辐射源信号熵特征评价[J].电路与系统学报, 2013, 18(2):298-304. doi: 10.3969/j.issn.1007-0249.2013.02.050

    WU Sidong, ZHU Ming, FU Kechang. Entropy feature evaluation of radar emitter signals based on SPA[J]. Journal of Circuits and Systems, 2013, 18(2):298-304. doi: 10.3969/j.issn.1007-0249.2013.02.050
    徐璟, 何明浩, 陈昌孝.雷达辐射源信号识别结果评估方法研究[J].电波科学学报, 2014, 29(2):300-304, 315. http://d.old.wanfangdata.com.cn/Periodical/dbkxxb201402018

    XU Jing, HE Minghao, CHEN Changxiao. Performance evaluation method for radar emitter signals recognition[J]. Chinese Journal of Radio Science, 2014, 29(2):300-304, 315. http://d.old.wanfangdata.com.cn/Periodical/dbkxxb201402018
    徐璟, 何明浩, 陈昌孝.基于理想排序的雷达信号识别效能评估方法[J].电波科学学报, 2015, 30(3):554-559. http://d.old.wanfangdata.com.cn/Periodical/dbkxxb201503023

    XU Jing, HE Minghao, CHEN Changxiao. Effectiveness evaluation of signal recognition based on AHP-I2TOPSIS[J]. Chinese Journal of Radio Science, 2015, 30(3):554-559. http://d.old.wanfangdata.com.cn/Periodical/dbkxxb201503023
    徐璟, 何明浩, 郁春来.雷达辐射源信号识别效能评估的I2TOPSIS方法[J].信号处理, 2015, 31(3):253-258. doi: 10.3969/j.issn.1003-0530.2015.03.001

    XU Jing, HE Minghao, YU Chunlai. Effectiveness evaluation of radar emitter signal recognition based on I2TOPSIS[J]. Journal of Signal Processing, 31(3):253-258. doi: 10.3969/j.issn.1003-0530.2015.03.001
    YU Zhibin, CHEN Chunxia. The radar signal feature-separability model analysis[C]//Advanced Materials Research. Guangzhou: [s.n.], 2011, 268/269/270: 1484-1487.
    ZHU B, JIN W D, YU Z B, et al. Feature separability evaluation for advanced radar emitter signals[C]//Communications in Computer and Information Science. Shanghai: Springer-Verlag. 2012: 204-212.
    朱斌, 金炜东, 余志斌.复杂体制雷达辐射源信号特征的FAHP评价[J].计算机工程与应用, 2012, 48(20):18-22. doi: 10.3778/j.issn.1002-8331.2012.20.004

    ZHU Bin, JIN Weidong, YU Zhibin. FAHP-based feature evaluation for advanced radar emitter signals[J]. Computer Engineering and Applications, 2012, 48(20):18-22. doi: 10.3778/j.issn.1002-8331.2012.20.004
    段美军, 金炜东, 杨志新.一种雷达辐射源信号多目标特征评价模型[J].计算机应用研究, 2012, 29(8):2912-2914. doi: 10.3969/j.issn.1001-3695.2012.08.029

    DUAN Meijun, JIN Weidong, YANG Zhixin. Multi-objective characteristics evaluation model of radar emitter signal[J]. Application Research of Computers, 2012, 29(8):2912-2914. doi: 10.3969/j.issn.1001-3695.2012.08.029
    SU Yu, SHAN Shiguang, CHEN Xilin. Classifiability-based discriminatory projection pursuit[J]. IEEE Transactions on Neural Networks, 2011, 22(12):2050-2061. doi: 10.1109/TNN.2011.2170220
    ALADJEM M. Projection pursuit mixture density estimation[J]. IEEE Transactions on Signal Processing, 2005, 53(11):4376-4383. doi: 10.1109/TSP.2005.857007
    ZHU B, JIN W, YU Z. The distribution characteristics analysis of advanced RES feature[C]//Communications in Computer and Information Science. Singapore: Springer-Verlag. 2013: 429-434.
    MADHUBANTI M, AMITAVA C. A hybrid cooperative-comprehensive learning based PSO algorithm for image segmentation using multilevel thresholding[J]. Expert Systems with Applications, 2008, 34(2):1341-1350. doi: 10.1016/j.eswa.2007.01.002
    CHIAM S C, TAN K C, MAMUN A Al. A memetic model of evolutionary PSO for computational finance applications[J]. Expert Systems with Applications, 2009, 36(2):3695-3711. doi: 10.1016/j.eswa.2008.02.048
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  410
  • HTML全文浏览量:  186
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-20
  • 刊出日期:  2018-02-25

目录

    /

    返回文章
    返回