Effect of Pounding on Elastic-Plastic Dynamic Response of High Pier Bridge in Mountainous Area
-
摘要: 为了研究碰撞对山区高墩桥动力响应的影响,以某一大跨度高墩桥体系为原型,充分考虑了碰撞过程中的刚度变化、能量耗散以及桥墩的非线性行为,基于OpenSess平台建立了两种典型桥跨结构的弹塑性动力分析模型.在此基础上,利用所选的天然地震波和人工地震波对比分析了碰撞效应对山区高墩桥弹塑性动力响应的影响.研究结果表明:碰撞会对高墩桥结构的动力响应产生较为明显的影响,特别是场地条件较差时,其最大改变率为15.86%,桥墩与主梁的连接方式会进一步改变碰撞对桥墩变形的影响程度;相邻结构动力特性差异越大,高墩桥体系发生碰撞的概率就越大,但碰撞次数的增加可能会对桥墩变形起到限制作用,降低桥墩的响应,在确定山区高墩桥体系相邻结构周期比时,既要考虑相邻结构动力特性差异对碰撞概率的影响,还应考虑其对碰撞效应的影响;高墩桥的梁-桥台碰撞主要受地震动作用大小的影响,地震动的强度和相邻结构动力特性的差异均会对梁-梁碰撞产生影响,在对高墩桥进行减撞防撞设计时,应针对不同的碰撞位置采取不同的措施.Abstract: To study the effect of pounding on the seismic response of high-pier bridge in mountainous areas, the elastic-plastic dynamic analysis models of two typical bridge structures were established by using the OpenSees framework, based on the prototype of a real high-pier bridge. The variation in stiffness, energy dissipation during the pounding process, and the non-linear behavior of the piers were fully considered in the models. Additionally, the effect of pounding on dynamic responses of a high-pier bridge was analyzed by using the selected natural and artificial ground motions. The results show that pounding can significantly affect the structural responses, especially for poor site conditions, and the maximum change rate is 15.86%. Moreover, the method of connecting the pier and beam further influences the effect of pounding on the pier displacement; A larger difference in dynamic characteristics of adjacent structures corresponds to a larger probability of collision; however, the increasing frequency of pounding may reduce the responses of piers, owing to the restriction effect on the pier deformation. Thus, when selecting the period ratio of adjacent structures, it is necessary to consider its effect on not only the probability of pounding, but also on the degree of effect of pounding. In comparison, beam-abutment pounding is mainly affected by the intensity of ground motions, whereas the beam-beam pounding is influenced by both the intensity of ground motions and the difference in dynamic characteristics of adjacent structures. Therefore, in seismic design, to reduce the pounding of high-pier bridges, it is suggested that different measures should be adopted for different pounding positions.
-
Key words:
- bridge engineering /
- high pier bridge /
- elastic-plastic analysis /
- pounding /
- site condition
-
表 1 Hertz-damp简化模型特征参数
Table 1. Properties of Simplified Hertz-damp model
特征参数 取值 Kh/(kip·(in3/2)-1) 25 000
(868 kN/mm3/2)n 3/2 e 0.8 δm/mm 16 a 0.1 δy/mm 1.6 Keff/(kN·mm-1) 3 472 Kt1/(kN·mm-1) 8 472 Kt2/kN·mm-1) 2 916 gp/mm 100 表 2 桥梁结构纵向模态信息
Table 2. Longitudinal modes of bridge structure
桥梁模型 主桥频率fM/Hz 引桥频率fA/Hz 频率比fM/fA R-C体系 0.75 1.08 0.69 C-C体系 0.63 1.08 0.58 表 3 所选地震动详细信息
Table 3. Detail of selected ground motions
场地类型 编号 地震名称 时间 震级 记录点 MSE 放大系数 硬场 RSN1614 Duzce Turkey 1999 7.14 Lamont 1061 0.104 1 1.981 5 RSN1633 Manjil Iran 1990 7.37 Abbar 0.087 2 0.447 1 RSN4869 Chuetsu-oki 2007 6.80 Ojiya City 0.106 1 1.682 9 中硬场 RSN3757 Landers 1992 7.28 North Palm Springs Fire Sta #36 0.122 0 2.114 3 RSN4848 Chuetsu-oki 2007 6.80 Joetsu Ogataku 0.074 6 1.303 4 RSN5783 Iwate 2008 6.90 Semine Kurihara City 0.095 0 1.802 3 软场 RSN169 Imperial Valley-06 1979 6.53 Delta 0.051 2 1.071 9 RSN172 Imperial Valley-06 1979 6.53 El Centro Array #1 0.070 6 3.041 2 RSN728 Superstition Hills-02 1987 6.54 Westmorland Fire Sta 0.048 9 1.275 1 表 4 工况列表
Table 4. Case details
编号 地震动类型 场地类型 桥梁类型 碰撞效应 1~18 人工地震动(3条)、
天然地震动(3条)硬场、
中硬场、
软场R-C、
C-C不考虑 19~36 人工地震动(3条)、
天然地震动(3条)硬场、
中硬场、
软场R-C、
C-C考虑 表 5 桥墩相对位移改变率
Table 5. Change rate of pier displacement
% 墩号 场地类型 R-C体系 C-C体系 连接类型 改变率 连接类型 改变率 P1 硬场 固结 1.06 固定 -5.00 中硬场 6.36 -6.20 软场 4.97 -8.77 P2 硬场 结 0.77 活动 1.02 中硬场 6.86 0.84 软场 5.35 3.94 P3 硬场 活动 -1.59 活动 -3.89 中硬场 -1.92 0.56 软场 2.12 1.68 P4 硬场 定 -1.16 固定 -1.24 中硬场 -4.06 -5.49 软场 -10.50 -12.81 P5 硬场 动 0.00 活动 -0.87 中硬场 -2.86 1.45 软场 -0.20 2.53 表 6 支座位移改变率
Table 6. Change rate of bearings
% 支座 场地类型 R-C体系 C-C体系 M1 硬场 -0.01 -4.53 中硬场 7.90 -1.94 软场 6.40 -4.92 M2 硬场 0.62 -4.14 中硬场 2.07 -0.17 软场 0.60 -7.57 M3 硬场 -1.21 -7.53 中硬场 -3.00 -7.99 软场 -10.29 -12.76 M4 硬场 -1.86 -6.53 中硬场 -6.99 -5.09 软场 -13.17 -4.62 M5 硬场 -1.82 -0.54 中硬场 -5.08 -8.39 软场 -11.63 -15.86 M6 硬场 — -1.16 中硬场 — -8.23 软场 — -14.45 表 7 最大碰撞力及碰撞次数
Table 7. Details of maximum pounding force and pounding frequency
场地类型 碰撞位置 R-C结构体系 C-C结构体系 最大碰撞力/kN 碰撞次数/次 最大碰撞力/kN 碰撞次数/次 硬场 B-B 3.33×104 1 3.25×104 5 A1-B 5.88×104 2 1.02×105 6 A2-B 2.19×104 1 1.40×104 1 中硬场 B-B 9.48×104 3 7.53×104 6 A1-B 1.53×105 5 1.31×104 5 A2-B 8.78×104 3 8.56×104 4 软场 B-B 1.53×105 5 1.02×105 6 A1-B 2.14×105 6 1.31×105 6 A2-B 1.33×105 5 9.80×104 6 -
宋晓东, 李建中.山区桥梁的抗震概念设计[J].地震工程与工程振动, 2004, 24(1):92-96. doi: 10.3969/j.issn.1000-1301.2004.01.015Song Xiaodong, Li Jianzhong. Seismic conceptual design for mountain bridges[J]. Earthquake Engineering and Engineering Vibration, 2004, 24(1):92-96. doi: 10.3969/j.issn.1000-1301.2004.01.015 中华人民共和国交通运输部. JTG/T B02-01-2008公路桥梁抗震设计细则[S].北京: 重庆交通科研设计院, 2008. LEW H S. Performance of structures during the loma prieta earthquake of October 17, 1989[M]. Washington D C:NIST SP 778, 1990:5-7. MOEHLE J P. Northridge earthquake of January 171994:Reconnaissance report, volume 1-highway bridge and traffic management[J]. Earthquake Spectra, 1995, 11(3):287-372. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=EASPEF0000110000S2000287000001&idtype=cvips&gifs=Yes BRUNEAU M. Performance of steel bridges during the 1995 Hyogoken-Nanbu (Kobe, Japan) earthquake-a North American perspective[J]. Engineering Structures, 1998, 20(12):1063-1078. doi: 10.1016/S0141-0296(97)00203-4 HAN Q, DU X, LIU J, et al. Seismic damage of highway bridges during the 2008 Wenchuan earthquake[J]. Earthquake Engineering and Engineering Vibration, 2009, 8(2):263-273. doi: 10.1007/s11803-009-8162-0 李建中, 范立础.非规则梁桥纵向地震反应及碰撞效应[J].土木工程学报, 2005, 38(1):84-90. doi: 10.3321/j.issn:1000-131X.2005.01.011Li Jianzhong, Fan Lichu. Longitudinal seismic response and pounding effects of girder bridges with unconventional configurations[J]. China Civil Engineering Journal, 2005, 38(1):84-90. doi: 10.3321/j.issn:1000-131X.2005.01.011 PRIESTLEY M N, SEIBLE F, CALVI G M. Seismic design and retrofit of bridges[M]. New Jersey:John Wiley & Sons, 1996:155-264. ZANARDO G, HAO H, MODENA C. Seismic response of multi-span simply supported bridges to a spatially varying earthquake ground motion[J]. Earthquake Engineering & Structural Dynamics, 2010, 31(6):1325-1345. doi: 10.1002-eqe.166/ WON J H, MHA H S, KIM S H. Effects of the earthquake-induced pounding upon pier motions in the multi-span simply supported steel girder bridge[J]. Engineering Structures, 2015, 93:1-12. doi: 10.1016/j.engstruct.2015.03.010 JANKOWSKI R, WILDE K, FUJINO Y. Pounding of superstructure segments in isolated elevated bridge during earthquakes[J]. Earthquake Engineering & Structural Dynamics, 2015, 27(5):487-502. doi: 10.1002-(SICI)1096-9845(199805)27-5-487--AID-EQE738-3.0.CO%3b2-M/ MALHOTRA P K. Dynamics of seismic pounding at expansion joints of concrete bridges[J]. Journal of Engineering Mechanics, 1998, 124(7):794-802. doi: 10.1061/(ASCE)0733-9399(1998)124:7(794) DESROCHES R, MUTHUKUMAR S. Effect of pounding and restrainers on seismic response of multiple-frame bridges[J]. Journal of Structural Engineering, 2002, 128(7):860-869. doi: 10.1061/(ASCE)0733-9445(2002)128:7(860) CHOUW N, HAO H. Significance of SSI and nonuniform near-fault ground motions in bridge response Ⅰ:effect on response with conventional expansion joint[J]. Engineering Structures, 2008, 30(1):141-153. doi: 10.1016/j.engstruct.2007.03.002 NAVA F, NOBILI C, FERLA G. Experimental investigation of inelastic bridge response under spatially varying excitations with pounding[J]. Engineering Structures, 2014, 79(54):106-116. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b7859f29cff6299a248151f5457a633f MUTHUKUMAR S, DESROCHES R. A Hertz contact model with non-linear damping for pounding simulation[J]. Earthquake Engineering & Structural Dynamics, 2006, 35(7):811-828. doi: 10.1002/eqe.557/full GUO Anxin, CUI Lili, LI Hui. Impact stiffness of the Contact-Element models for the pounding analysis of highway bridges:experimental evaluation[J]. Journal of Earthquake Engineering, 2012, 16(8):1132-1160. doi: 10.1080/13632469.2012.693243 BI K, HAO H, CHOUW N. Influence of ground motion spatial variation, site condition and SSI on the required separation distances of bridge structures to avoid seismic pounding[J]. Earthquake Engineering & Structural Dynamics, 2011, 40(9):1027-1043. doi: 10.1002/eqe.1076/pdf 周光伟, 李建中, 陈昌萍, 等.行波输入下连续梁桥纵向墩梁相对位移碰撞效应分析[J].世界地震工程, 2012, 28(4):51-57. doi: 10.3969/j.issn.1007-6069.2012.04.008ZHOU Guangwei, LI Jianzhong, CHEN Changping, et al. Analysis of longitudinal pounding due to relative displacement between pier top and girder of continuous girder bridge under input of traveling wave[J]. World Earthquake Engineering, 2012, 28(4):51-57. doi: 10.3969/j.issn.1007-6069.2012.04.008 LI B, BI K, CHOUW N, et al. Experimental investigation of spatially varying effect of ground motions on bridge pounding[J]. Earthquake Engineering & Structural Dynamics, 2012, 41(14):1959-1976. doi: 10.1002/eqe.2168/full 高玉峰, 蒲黔辉, 李晓斌.考虑碰撞效应的双柱式高墩桥梁非线性地震反应特性研究[J].公路交通科技, 2011, 28(4):36-45. doi: 10.3969/j.issn.1002-0268.2011.04.007GAO Yufeng, PU Qianhui, LI Xiaobin. Nonlinear seismic response characteristics of bridge with double-column high-rise piers considering pounding effect[J]. Journal of Highway and Transportation Research and Development, 2011, 28(4):36-45. doi: 10.3969/j.issn.1002-0268.2011.04.007 王军文, 李建中, 范立础.非规则梁桥横桥向地震碰撞反应分析[J].振动与冲击, 2010, 29(6):25-30. doi: 10.3969/j.issn.1000-3835.2010.06.007WANG Junwen, LI Jianzhong, FAN Lichu. Analysis on pounding effect of irregular girder bridges under transverse earthquake[J]. Journal of Vibration and Shock, 2010, 29(6):25-30. doi: 10.3969/j.issn.1000-3835.2010.06.007 YASSIN M H M. Nonlinear analysis of prestressed concrete structures under monotonic and cycling loads[D]. Berkeley: University of California, 1994. FILIPPOU F C, POPOV E P, BERTERO V V. Effects of bond deterioration on hysteretic behavior of reinforced concrete joints[R]. Berkeley: University of California, 1983. MUTHUKUMAR S. A contact element approach with hysteresis damping for the analysis and design of pounding in bridges[D]. Georgia: Georgia Institute of Technology, 2003. VANMARCKE E H, GASPARINI D A. Simulated earthquake motions compatible with prescribed response spectra[R]. Boston: Dept. of Civil Engineering, Massachusetts Inst. of Technology, 1976. PEER. Technical report for the PEER ground motion database web application[R]. Berkeley: Pacific Earthquake Engineering Research Center, 2010.