• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

水库蓄水对山区桥址风特性的影响

王云飞 汪斌 李永乐

王云飞, 汪斌, 李永乐. 水库蓄水对山区桥址风特性的影响[J]. 西南交通大学学报, 2018, 53(1): 95-101, 145. doi: 10.3969/j.issn.0258-2724.2018.01.012
引用本文: 王云飞, 汪斌, 李永乐. 水库蓄水对山区桥址风特性的影响[J]. 西南交通大学学报, 2018, 53(1): 95-101, 145. doi: 10.3969/j.issn.0258-2724.2018.01.012
WANG Yunfei, WANG Bin, LI Yongle. Influence of Reservoir Water Storage on Wind Characteristics over Bridge Site in Mountainous Area[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 95-101, 145. doi: 10.3969/j.issn.0258-2724.2018.01.012
Citation: WANG Yunfei, WANG Bin, LI Yongle. Influence of Reservoir Water Storage on Wind Characteristics over Bridge Site in Mountainous Area[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 95-101, 145. doi: 10.3969/j.issn.0258-2724.2018.01.012

水库蓄水对山区桥址风特性的影响

doi: 10.3969/j.issn.0258-2724.2018.01.012
基金项目: 

国家自然科学基金资助项目 51508480

四川省青年科技创新研究团队 2015TD0004

国家自然科学基金资助项目 51525804

详细信息
    作者简介:

    王云飞(1990-), 男, 博士研究生, 研究方向为桥梁风工程, E-mail:wangyunfei_hn@163.com

    通讯作者:

    汪斌(1983-), 男, 讲师, 博士, 研究方向为桥梁风工程, E-mail:wangbinwvb@swjtu.edu.cn

  • 中图分类号: U441.2

Influence of Reservoir Water Storage on Wind Characteristics over Bridge Site in Mountainous Area

  • 摘要: 为研究山区水电大坝蓄水后对库区桥位风场特性的影响,以某复杂深切峡谷大跨度悬索桥为工程背景,通过Gambit和ICEM分别构建了原始地形以及大坝蓄水后的地形数值模型,并应用软件FLUENT对两个模型进行了数值模拟,多工况对比分析了大坝蓄水对桥址区风速沿竖向和主梁跨向分布以及对主梁平均风速、风攻角和风向角的影响.研究结果表明:无蓄水时该桥址区风速有较明显的加速效应,风速放大系数高达1.14,但蓄水后明显降低;大坝蓄水后,大多数工况下主梁平均风速均有不同程度的降低,主梁的正攻角效应明显减弱,主梁平均风向角整体变化规律一致,风剖面形状在低海拔范围内有较大变化,而随着海拔增加二者逐渐趋于相同.

     

  • 图 1  桥位高程(单位:m)

    Figure 1.  Overall configuration of the bridge in case study(unit: m)

    图 2  大坝蓄水后的地形表面

    Figure 2.  Geometric terrain after water storage

    图 3  原地形不同网格尺度下风速计算结果(60°)

    Figure 3.  Wind velocity under different meshing scales of the origin terrain (60°)

    图 4  边界层网格局部示意

    Figure 4.  Local sketch of boundary layer mesh

    图 5  风速监测点分布

    Figure 5.  Distribution of wind velocity observation points

    图 6  来流风向示意

    Figure 6.  Sketch of wind directions involved

    图 7  蓄水对主梁跨向风特性的影响

    Figure 7.  Influence of water storage on wind characteristic along bridge deck

    图 8  主梁风速分布(90°)

    Figure 8.  Wind velocity distribution along bridge deck(90°)

    图 9  主梁风速分布(220°)

    Figure 9.  Wind velocity distribution along bridge deck(220°)

    图 10  横桥向平均风速(绝对值)随来流风向的变化

    Figure 10.  Variation of absolute average wind velocity with wind direction

    图 11  各工况下主梁平均风向角

    Figure 11.  Averaged wind direction

    图 12  各工况下主梁平均风攻角

    Figure 12.  Averaged wind attack angle

    图 13  蓄水时平均风速随攻角的变化

    Figure 13.  Variation of averaged wind velocity with wind attack angle without water storage

    图 14  无蓄水时平均风速随攻角的变化

    Figure 14.  Variation of averaged wind velocity with wind attack anglewith water storage

    图 15  主跨跨中竖向风剖面

    Figure 15.  Vertical wind profile in the mid-span

    图 16  索塔处竖向风剖面

    Figure 16.  Vertical wind profile at bridge tower

    表  1  工况风速放大系数(200°~260°)

    Table  1.   Wind velocity amplification coefficient (200°~260°)

    来流工况 200° 210° 220° 230° 240° 250° 260°
    无蓄水 0.90 0.95 1.14 1.13 0.93 0.95 1.01
    蓄水 0.76 0.82 1.05 1.03 0.84 1.06 0.98
    下载: 导出CSV

    表  2  风速与风攻角包络值

    Table  2.   Envelop value of wind velocity and attack angles

    主梁高度处平均风攻角/(°) 主梁横向平均风速/(m·s-1)
    无蓄水 蓄水 无蓄水 蓄水
    -9 -9 30.0 24.0
    -5~1 -1~2 44.5 41.2
    7 5 23.0 18.0
    下载: 导出CSV
  • 中交公路规划设计院. JTG/T D 60-01-2004公路桥梁抗风设计规范[S].北京: 中国标准出版社, 2004.
    李永乐, 唐康, 蔡宪棠, 等.深切峡谷区大跨度桥梁的复合风速标准[J].西南交通大学学报, 2010, 45(2):167-173. doi: 10.3969/j.issn.0258-2724.2010.02.001

    LI Yongle, TANG Kang, CAI Xiantang, et al.Integrated wind speed standard for long-span bridges over deep-cutting gorge[J]. Journal of Southwest Jiaotong University, 2010, 45(2):167-173. doi: 10.3969/j.issn.0258-2724.2010.02.001
    李永乐, 张明金, 徐昕宇, 等.高海拔高温差深切峡谷桥址区日常大风成因[J].西南交通大学学报, 2014, 49(6):935-941. doi: 10.3969/j.issn.0258-2724.2014.06.001

    LI Yongle, ZHANG Mingjin, XU Xinyu, et al. Causesof daily strong wind on bridge site in deep gorge withm high altitude and high temperature difference[J]. Journal of Southwest Jiaotong University, 2014, 49(6):935-941. doi: 10.3969/j.issn.0258-2724.2014.06.001
    刘红年, 张宁, 吴涧, 等.水库对局地气候影响的数值模拟研究[J].云南大学学报, 2010, 32(2):171-176. http://d.old.wanfangdata.com.cn/Periodical/yndxxb201002010

    LIU Hongnian, ZHANG Ning, WU Jian, et al. Study of effects of reservoir on local climate using numerical simulation[J]. Journal of Yunnan University, 2010, 32(2):171-176. http://d.old.wanfangdata.com.cn/Periodical/yndxxb201002010
    BITSUAMLAK G T, STATHOPOULOS T, BEDARD C, et al. Numerical evaluation of wind flow over complex terrain:review[J]. Journal of Aerospace Engineering, 2004, 17(4):135-145. doi: 10.1061/(ASCE)0893-1321(2004)17:4(135)
    CHOCK G Y K, COCHRAN L. Modeling of topographic wind speed effects in Hawaii[J]. Journal of Wind Engineering and industrial Aerodynamics, 2005, 93(8):623-638. doi: 10.1016/j.jweia.2005.06.002
    KIM H G, PATEL V C, LEE C M. Numerical simulation of wind flow over hilly terrain[J]. Journal of Wind Engineering and industrial Aerodynamics, 2000, 87(1):45-60. doi: 10.1016/S0167-6105(00)00014-3
    BITSUAMLAK G T, STATHOPOULOS T, EACUTE C B. Numerical evaluation of wind flow over complex terrain:review[J]. Journal of Aerospace Engineering, 2004, 17(4):135-145. doi: 10.1061/(ASCE)0893-1321(2004)17:4(135)
    MURAKAMI S. Current status and future trends in computational wind engineering[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 67/68(1):3-34. http://www.onacademic.com/detail/journal_1000034605833010_0a7f.html
    XIAO Yiqing, LI Chao, LI Qiusheng, et al. Numerical simulation of wind speed distributions over complex terrains[C]//The 12th International Conference on Wind Engineering Caims. Australia: Australasian Wind Engineering Society, 2007: 1119-1126.
    邓院昌, 刘沙, 余志, 等.实际地形风场CFD模拟中粗糙度的影响分析[J].太阳能学报, 2010, 31(12):1644-1648. http://d.old.wanfangdata.com.cn/Periodical/tynxb201012022

    DENG Yuanchang, LIU Sha, YU Zhi, et al. Effect of roughness on CFD wind field simulation over natural terrain[J]. ACTA Energiae Solaris Sinica, 2010, 31(12):1644-1648. http://d.old.wanfangdata.com.cn/Periodical/tynxb201012022
    ABDI D S, BITSUAMLAK G T. Wind flow simulationson idealized and real complex terrain using various turbulence models[J]. Advances in Engineering Software, 2014, 75(8):30-41. http://www.sciencedirect.com/science/article/pii/S0965997814000787
    周志勇, 肖亮, 丁泉顺, 等.大范围区域复杂地形风场数值模拟研究[J].力学季刊, 2010, 31(1):101-107. http://d.old.wanfangdata.com.cn/Periodical/lxjk201001015

    ZHOU Zhiyong, XIAO Liang, DING Quanshun, et al. Numerical simulation study of wind environment for the flow around large region with complex terrain[J]. Chinese Quarterly of Mechanics, 2010, 31(1):101-107. http://d.old.wanfangdata.com.cn/Periodical/lxjk201001015
    李永乐, 蔡宪棠, 唐康, 等.深切峡谷桥址区风场空间分布特性的数值模拟研究[J].土木工程学报, 2011, 44(2):116-122. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201100107457

    LI Yongle, CAI Xiantang, TANG Kang, et al. Study of spatial distribution feature of wind fields over bridge site with a deep-cutting gorge using numerical simulation[J]. China Civil Engineering Journal, 2011, 44(2):116-122. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201100107457
    李永乐, 遆子龙, 汪斌, 等.山区Y形河口附近桥址区地形风特性数值模拟研究[J].西南交通大学学报, 2016, 51(2):341-348. doi: 10.3969/j.issn.0258-2724.2016.02.013

    LI Yongle, TI Zilong, WANG Bin, et al. Numerical simulation of wind characteristics over bridge site near Y-shaped river junction in mountainous area[J]. Journal of Southwest Jiaotong University, 2016, 51(2):341-348. doi: 10.3969/j.issn.0258-2724.2016.02.013
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  515
  • HTML全文浏览量:  226
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-10
  • 刊出日期:  2018-02-25

目录

    /

    返回文章
    返回