Ring-Net Subdivision Equivalent Model of Flexible Protection System
-
摘要: 环形网是被动柔性防护系统中的重要结构单元,其冲击变形具有明显的多柔体非线性动力学特征,其计算模型的构建是柔性防护结构理论研究的难点与关键点. 为了建立环形网的计算模型,首先通过柔性被动网整体结构足尺冲击试验,获取了环形拦截网的区域化变形特征以及网环的典型变形状态;其次通过网环拉伸试验与数值仿真计算的方式得到了各典型变形状态下,网环的荷载位移关系,建立了分区等代计算模型;最后通过与网片顶破试验、动力冲击试验展开对比计算的方式校验了模型的准确性. 研究结果表明:环形拦截网具有明显的分区域变形特征,网环(环形网的基本单元)具有3种典型变形状态,各变形状态的网环均具有两阶段受力特征;据此采用连接于圆心、初始长度为网环半径的“X”形4桁架单元模拟单个网环,将典型变形状态下网环的荷载位移关系等效为桁架单元应力应变关系,连接对应节点形成整片网的单元模型,根据网环所处的变形区域赋予桁架单元相应的应力应变关系,建立了整片环形网的高效率分区域等代模型;通过与静力试验及动力试验的对比,模型计算误差小于10%.Abstract: The ring-net is an important interception component in passive flexible protection systems, and it has obvious nonlinear dynamic characteristics. Constructing a mechanical model of the ring network is the key problem in the theoretical study of the flexible protection structure. To propose an equivalent mechanical model of the ring net, an full-scale impact test was conducted with an actual structure, and the regional deformation characteristics of the ring-net and typical deformation state of the ring-net were obtained. Then, the load-displacement relationships of the net ring under typical deformation states were obtained using a tension test and numerical simulation calculation; on these bases, a subdivision equivalent calculation model was established.. Finally, the accuracy of the model was verified by comparison with the breaking and dynamic impact tests. Results show that the deformation of the ring net has obvious regional characteristics, and the ring-net (basic unit of the net) displays three typical deformation states (each with two-stage characteristics). Based on this, an ‘X’ type 4-truss element, connected to the centre of the circle with the initial length of the ring radius, is used to simulate a single ring. The load-displacement relationship of the ring in a typical deformation state is treated as equivalent to the stress-strain relationship of the truss element, and the corresponding nodes are connected to form the element model of the entire ring-net. A comparison with the static and dynamic tests indicates that the model calculation error is less than 10%.
-
Key words:
- flexible protection system /
- ring-net /
- equivalent model /
- computing method /
- numerical calculation
-
表 1 构件型号
Table 1. Component specifications
构件 规格 减压环 支撑钢柱 上拉锚绳/mm 上支撑绳/mm 下支撑绳/mm 能量/kJ 个数/个 工作拉力/ t 环形网 R16/3/300 50 48 4.5 HW250 mm × 250 mm × 9 mm × 14 mm 3ϕ18 × 8 4ϕ22 4ϕ22 表 2 试件规格
Table 2. Specimen specifications
试验 试件规格 对径拉伸 R5/3/300 R7/3/300 R9/3/300 滑移对角拉伸 R5/3/302 R7/3/302 R9/3/302 表 3 破断力及变形量结果
Table 3. Fracture forces and deformation results
试件规格 对径试验 滑移对角试验 对角计算 δ/mm P/kN δ/mm P/kN δ/mm P/kN R5/3/300 151 54 226 56 17 49 R7/3/300 155 84 240 85 17 65 R9/3/300 155 96 245 93 16 86 表 4 结果对比
Table 4. Results comparison
试件规格 顶破力/kN 顶破变形/mm 试验 计算 试验 计算 R5/3/300 211 205 1 082 1 083 R7/3/300 315 309 1 007 1 008 R9/3/300 469 459 1 007 1 008 -
EOTA, ETAG 27. Guideline for European technical approval of falling rock protection kits[M]. [S.l]: European Organization for Technical Approvals, 2008: 2012 GERBER W, Guideline for the approval of rockfall protection kits, Environment in practice[R]. Bern: Swiss Agency for the Environment, Forests and Landscape (SAEFL), Swiss Federal Research Institute WSL, 2001 王玉锁,周良,李正辉,等. 落石冲击下单压式拱形明洞的力学响应[J]. 西南交通大学学报,2017,52(3): 505-515. doi: 10.3969/j.issn.0258-2724.2016.06.012WANG Yusuo, ZHOU Liang, LI Zhenghui, et al. Mechanical responses of single pressure arch shaped open tunnel structure under rock fall impaction[J]. Journal of Southwest Jiaotong University, 2017, 52(3): 505-515. doi: 10.3969/j.issn.0258-2724.2016.06.012 赵世春,余志祥,赵雷,等. 被动防护网系统强冲击作用下的传力破坏机制[J]. 工程力学,2016,33(10): 24-34. doi: 10.6052/j.issn.1000-4750.2016.06.ST08ZHAO Shichun, YU Zhixiang, ZHAO Lei, et al. Damage mechanism of rockfall barriers under strong impact loading[J]. Engineering Mechanics, 2016, 33(10): 24-34. doi: 10.6052/j.issn.1000-4750.2016.06.ST08 MORTON E C, THOMPSON A G, VILLAESCUSA E, et al. Testing and analysis of steel wire mesh for mining application of rock surface support[C]//The 11th Congress of the International Society for Rock Mechanics. Lisbon: [s.n.], 2007: 1061-1064 GRASSL H, VOLKWEIN A, BARTELT P. et al. Experimental and numerical modeling of highly flexible rockfall protection barriers[C]//Proceedings of 12th Panamerican Conference on Soil Mechanics and Geotechnical Engineering. Cambridge: [s.n.], 2003: 2589-2594 VOLKWEIN A. Numerische simulation von flexiblen steinschlagschutz systemen[D]. Zurich: Swiss Federal Institute of Technology, 2004 NICOT F, CAMBOU B, MAZZOLENI G. From a constitutive modelling of metallic rings to the design of rockfall restraining nets[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 2015, 25(1): 49-70. GRASSL H, VOLKWEIN A, ANDERHEGGEN E, et al. Steel-net rockfall protection-experimental and numerical simulation[C]//Proceedings of the seventh international conference on structures under shock and impact. Montreal: [s.n.], 2002: 143-153 GENTILINI C, GOTTARDI G, GOCONO L, et al. Design of falling rock protection barriers using numerical models[J]. Engineering Structures, 2013, 50: 96-106. doi: 10.1016/j.engstruct.2012.07.008 VOLKWEIN A. Numerical modelling of flexible rockfall protection systems[J]. American Society of Civil Engineers, 2013, 179: 1-11. BERTRAND D, NICOT F, GOTTELAND P. Discrete element method numberical modeling of double_twisted hexagonal mesh[J]. NRCResearch, 2008: 1104-1117. BERTRAND D, TRAD A, LIMAM A, et al. Full-scale dynamic analysis of an innovative rockfall fence under impact using the discrete element method:from the local scale to the structure scale[J]. Rock Mechanics & Rock Engineering, 2012, 45(5): 885-900. ESCALLÓN J P, WENDELER C, CHATZI E, et al. Parameter identification of rockfall protection barrier components through an inverse formulation[J]. Engineering Structures, 2014, 77: 1-16. doi: 10.1016/j.engstruct.2014.07.019 赵世春,余志祥,韦韬,等. 被动柔性防护网受力机理试验研究与数值计[J]. 土木工程学报,2013,46(5): 122-128.ZHAO Shichun, YU Zhixiang, WEI Tao. Test study of force mechanism and numerical calculation of safety netting system[J]. China Civil Engineering Journal, 2013, 46(5): 122-128. YU Z X, QIAO Y K, ZHAO L, et al. A simple analytical method for evaluation of flexible rockfall barrier part 1:working mechanism and analytical solution[J]. Advanced Steel Construction, 2018, 14(2): 115-141. YU Z X, QIAO Y K, ZHAO L, et al. A simple analytical method for evaluation of flexible rockfall barrier part 2:application and full-scale test[J]. Advanced Steel Construction, 2018, 14(2): 142-165.