• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

隧道火灾排烟口位置对排烟效率的影响

林鹏 王国元 司有亮 王钟宽 吴凡雨 高东丽 梅秀娟

林鹏, 王国元, 司有亮, 王钟宽, 吴凡雨, 高东丽, 梅秀娟. 隧道火灾排烟口位置对排烟效率的影响[J]. 西南交通大学学报, 2019, 54(5): 1055-1062, 1112. doi: 10.3969/j.issn.0258-2724.20170945
引用本文: 林鹏, 王国元, 司有亮, 王钟宽, 吴凡雨, 高东丽, 梅秀娟. 隧道火灾排烟口位置对排烟效率的影响[J]. 西南交通大学学报, 2019, 54(5): 1055-1062, 1112. doi: 10.3969/j.issn.0258-2724.20170945
LIN Peng, WANG Guoyuan, SI Youliang, WANG Zhongkuan, WU Fanyu, GAO Dongli, MEI Xiujuan. Influence of Vent Location on Efficiency of Smoke Extraction in Tunnel Fire[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 1055-1062, 1112. doi: 10.3969/j.issn.0258-2724.20170945
Citation: LIN Peng, WANG Guoyuan, SI Youliang, WANG Zhongkuan, WU Fanyu, GAO Dongli, MEI Xiujuan. Influence of Vent Location on Efficiency of Smoke Extraction in Tunnel Fire[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 1055-1062, 1112. doi: 10.3969/j.issn.0258-2724.20170945

隧道火灾排烟口位置对排烟效率的影响

doi: 10.3969/j.issn.0258-2724.20170945
基金项目: 国家自然科学基金资助项目(71573215);国家重点研发计划资助项目(2016YFC0800603);中央高校基本科研业务基金项目(2682016cx082)
详细信息
    作者简介:

    林鹏(1976—),男,副教授,博士,研究方向为隧道火灾理论和工程应用、群集人员安全疏散、城市应急疏散模拟和优化、消防性能化评估等,E-mail:linpeng@swjtu.edu.cn

    通讯作者:

    梅秀娟(1976—),女,研究员,研究方向为隧道火灾理论和工程应用方面,E-mail:1039322670@qq.com

  • 中图分类号: X932

Influence of Vent Location on Efficiency of Smoke Extraction in Tunnel Fire

  • 摘要: 为研究长大隧道其排烟口位置对半横向排烟效率的影响,本文以Memorial Tunnel 为原型建立1∶20隧道模型,其尺寸为 42.7 m × 0.45 m × 0.23 m,并采用坡度为水平和3.2%两种状态,以油池火(甲醇)作为火源,在模型隧道中进行了一系列的实验. 同时,采用火灾动力学模拟软件FDS 6.0.1对排烟口位于火源左侧、右侧和两侧对称分布3种工况进行数值模拟,对比数值模拟和实验结果,得出以下结论: (1)在水平隧道中,排烟口对称分布于火源两侧时,烟气层大致呈对称分布,排烟效率最高,相对于排烟口分布于火源左侧或右侧,其排烟效率能分别提高10.22%~13.58%和7.66%~16.84%;当两排烟口位于火源左侧或右侧时,烟气向排烟口所在位置相反方向蔓延距离增长,排烟效率不存在明显差异. (2)在倾斜隧道中,烟气在火源两侧呈不对称分布,向隧道高端蔓延距离较长;当排烟口仅火源左侧(低端)布置时排烟效率最低,而对称分布于火源两侧时的排烟效率有所提高,较排烟口仅左侧分布提高了33.9%~39.6%;排烟口仅分布于火源右侧(高端)时的排烟效率最高,与排烟口仅分布于火源左侧时相比,排烟效率提高了40.5%~51.6%. (3)倾斜隧道中排烟口位置对排烟效率的影响较水平隧道更为显著,且随着排烟量的增加,该影响程度逐渐减小.

     

  • 图 1  隧道模型(单位:m)

    Figure 1.  Tunnel model(unit:m)

    图 2  网格独立性分析结果

    Figure 2.  Results of grid sensitivity analysis.

    图 3  水平隧道排烟口分布于火源两侧时温升过程

    Figure 3.  Temperature rise along the horizontal tunnel for smoke vents symmetrically located on each sides of fire source

    图 4  实验中水平隧道内的温升分布及烟气层长度

    Figure 4.  Temperature distribution and smoke layer length in horizontal tunnel

    图 5  实验中倾斜隧道内的温升分布及烟气层长度

    Figure 5.  Temperature distribution and smoke layer length in tilted tunnel

    图 6  模拟中水平隧道内的温升分布及烟气层长度

    Figure 6.  Temperature distribution and smoke layer length in horizontal tunnel by simulations

    图 7  模拟中倾斜隧道内的温升分布及烟气层长度

    Figure 7.  Temperature distribution and smoke layer length in the tilted tunnel by simulations

    表  1  实验工况

    Table  1.   Experimental conditions

    实验编号排烟量/(m3•h−1开启排烟口编号排烟口位置
    11281、2火源左侧
    2192
    3256
    41282、3火源两侧
    5192
    6256
    71283、4火源右侧
    8192
    9256
    下载: 导出CSV
  • SANTOS-REYES J, BEARD A N. An analysis of the emergency response system of the 1996 Channel tunnel fire[J]. Tunnelling & Underground Space Technology, 2017, 65(1): 121-139.
    SHAFEE S, YOZGATLIGIL A. An experimental study on the burning rates of interacting fires in tunnels[J]. Fire Safety Journal, 2018, 96(1): 115-123.
    JI Jie, TONG Qi, WANG Liangzhu, et al. Application of the EnKF method for real-time forecasting of smoke movement during tunnel fires[J]. Advances in Engineering Software, 2017, 115(1): 398-412.
    ZHANG Hongtao, GAO Mingxu. The application of support vector machine (SVM) regression method in tunnel fires[J]. Procedia Engineering, 2018, 211(1): 1004-1011.
    ZHONG Wei, FAN Chuangang, JI Jie, et al. Influence of longitudinal wind on natural ventilation with vertical shaft in a road tunnel fire[J]. International Journal of Heat and Mass Transfer, 2013, 57(2): 671-678. doi: 10.1016/j.ijheatmasstransfer.2012.10.063
    ZHONG Wei, LÜ Jinjin, LI Zhaozhou, et al. A study of bifurcation flow of fire smoke in tunnel with longitudinal ventilation[J]. International Journal of Heat and Mass Transfer, 2013, 67(6): 829-835.
    HUANG Youbo, LI Yanfeng, DONG Bingyan, et al. Numerical investigation on the maximum ceiling temperature and longitudinal decay in a sealing tunnel fire[J]. Tunnelling & Underground Space Technology, 2017, 72(1): 120-130.
    HSU Wensheng, HUANG Yuhsiang, SHEN Tzusheng, et al. Analysis of the Hsuehshan tunnel fire in Taiwan[J]. Tunnelling & Underground Space Technology, 2017, 69(1): 108-115.
    胡隆华. 隧道火灾烟气蔓延的热物理特性研究[D]. 合肥: 中国科学技术大学, 2006.
    JI Jie, FAN Chuangang, ZHONG Wei, et al. Experimental investigation on influence of different transverse fire locations on maximum smoke temperature under the tunnel ceiling[J]. International Journal of Heat and Mass Transfer, 2012, 55(17): 4817-4826.
    JI Jie, GAO Zihe, FAN Chuangang, et al. Large eddy simulation of stack effect on natural smoke exhausting effect in urban road tunnel fires[J]. International Journal of Heat and Mass Transfer, 2013, 66(6): 531-542.
    VAUQUELIN O, MGRET O. Smoke extraction experiments in case of fire in a tunnel[J]. Fire Safety Journal, 2002, 37(5): 525-533. doi: 10.1016/S0379-7112(02)00014-0
    LIN Peng, LO Siuming, LI Tao. Numerical study on the impact of gradient on semi-transverse smoke control system in tunnel[J]. Tunnelling and Underground Space Technology, 2014, 44(3): 68-79.
    LIN Peng, ZHANG Yuchun, LI Tao, et al. A numerical study on the impact of vehicles’ blockage on the performance of semi-transversal smoke control system in tunnel fire[J]. Procedia Engineering, 2016, 135(1): 247-259.
    CHEN Longfei, HU Longhua, TANG Wei, et al. Studies on buoyancy driven two-directional smoke flow layering length with combination of point extraction and longitudinal ventilation in tunnel fires[J]. Fire Safety Journal, 2013, 59(7): 94-101.
    陈建忠,曹正卯,张琦. 侧壁排烟模式下超宽断面沉管隧道火灾排烟效率研究[J]. 地下空间与工程学报,2017,13(s1): 393-399.

    CHEN Jianzhong, CAO Zhengmao, ZHANG Qi. Study on the efficiency of smoke exhausting under lateral exhaust mode in extra-wide immersed tunnel fire[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(s1): 393-399.
    CHOW W K, GAO Y, ZHAO J H, et al. A study on tilted tunnel fire under natural ventilation[J]. Fire Safety Journal, 2016, 81: 44-57. doi: 10.1016/j.firesaf.2016.01.014
    RIESS I, BETTELINI M, BRANDT R. Smoke extraction in tunnels with considerable slope[C]// Proceedings of the 4th International Conference Safety in Road and Rail Tunnels. Madrid: [s.n.], 2001: 503-512
    TAJADURA R B, MORROS C S, MARIGORTA E B. Influence of the slope in the ventilation semi-transversal system of an urban tunnel[J]. Tunnelling & Underground Space Technology Incorporating Trenchless Technology Research, 2006, 21(1): 21-28.
    范传刚. 隧道火灾发展特性及竖井自然排烟方法研究[D]. 合肥: 中国科学技术大学, 2015
    HURLEY M J, GOTTUK D T, HALL J R, et al. SFPE Handbook of fire protection engineering[M]. New York: Springer, 2016: 3471-3472
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  560
  • HTML全文浏览量:  288
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-29
  • 修回日期:  2018-06-04
  • 网络出版日期:  2019-09-05
  • 刊出日期:  2019-10-01

目录

    /

    返回文章
    返回