• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于粒子滤波联合算法的地磁室内定位

黄鹤 仇凯悦 李维 罗德安

黄鹤, 仇凯悦, 李维, 罗德安. 基于粒子滤波联合算法的地磁室内定位[J]. 西南交通大学学报, 2019, 54(3): 604-610. doi: 10.3969/j.issn.0258-2724.20170927
引用本文: 黄鹤, 仇凯悦, 李维, 罗德安. 基于粒子滤波联合算法的地磁室内定位[J]. 西南交通大学学报, 2019, 54(3): 604-610. doi: 10.3969/j.issn.0258-2724.20170927
HUANG He, QIU Kaiyue, LI Wei, LUO Dean. Indoor Geomagnetic Positioning Based on Joint Algorithm of Particle Filter[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 604-610. doi: 10.3969/j.issn.0258-2724.20170927
Citation: HUANG He, QIU Kaiyue, LI Wei, LUO Dean. Indoor Geomagnetic Positioning Based on Joint Algorithm of Particle Filter[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 604-610. doi: 10.3969/j.issn.0258-2724.20170927

基于粒子滤波联合算法的地磁室内定位

doi: 10.3969/j.issn.0258-2724.20170927
基金项目: 国家重点研发计划资助项目(2017YFB0503702)
详细信息
    作者简介:

    黄鹤(1977—),男,副教授,研究方向为室内导航定位、智能驾驶高精度导航地图等,E-mail:huanghe@bucea.edu.cn

    通讯作者:

    罗德安(1968—),男,教授,研究方向为GNSS理论及应用、三维激光数据处理理论及应用等,E-mail:luodean@bucea.edu.cn

Indoor Geomagnetic Positioning Based on Joint Algorithm of Particle Filter

Funds: National Key Research and Development Program of China,No.2017YFB0503702
  • 摘要: 室内地磁场受钢结构与其它铁磁材料的影响,造成磁场区域局部异常,使室内地磁场具有特异性. 受益于此种现象,室内地磁定位技术得以实现. 然而在大型建筑中地磁场的特异性会减弱,这导致定位结果出现模糊现象. 针对这一现象,文中提出了基于路径匹配的室内地磁定位技术,通过增加匹配特征数量来解决此问题. 使用基于动态时间规整(dynamic time warp,DTW)算法与粒子滤波(particle filter,PF)算法的新型联合算法,并以路径匹配的模式对目标进行追踪. 在匹配过程中又通过计算斯皮尔曼等级(Spearman)相关系数确定路径之间的相似度,使之作为辅助定位. 最后用装载了磁传感器的测量机器人进行实验验证,结果表明:路径匹配具有足够的地磁特征数量,能够解决特异性减弱情况下定位结果模糊现象,且定位精度优于1 m.

     

  • 图 1  定位流程框架

    Figure 1.  Framework of the positioning process

    图 2  联合算法流程

    Figure 2.  Process flow of the joint algorithm

    图 3  走廊平面图以及地磁参考图

    Figure 3.  Corridor plan and geomagnetic reference map

    图 4  测量机器人结构

    Figure 4.  Structure of a measurement robot

    图 5  点位与路径长度关系

    Figure 5.  Relationship between points and path length

    图 6  不同粒子数随着路径增加的定位结果

    注:图中的数字编号代表粒子数,即1表示N = 100粒子

    Figure 6.  Positioning results of different particle numbers increasing with path

    图 7  误差占比(e < 1 m)

    Figure 7.  Proportion of error(e < 1 m)

    图 8  同一路径基于粒子滤波器单点定位结果(N = 400)

    Figure 8.  Positioning results of single point for the same path based on particle filter (N = 400)

    图 9  粒子滤波器基于单点匹配和联合算法基于路径匹配的误差占比以及匹配时间

    Figure 9.  Error ratio and matching time of the particle filter based on single point matching and joint algorithm based on path matching

    图 10  定位结果对比(N = 400)

    Figure 10.  Comparison of positioning results (N = 400)

    图 11  不同路径定位误差比较

    Figure 11.  Comparison of positioning errors for different paths

    表  1  不同粒子数匹配时间

    Table  1.   Time required to match different particle counts

    N100200300400500600
    时间/s1.922.963.844.735.726.71
    下载: 导出CSV
  • VALVERDE T G, SOLA A G, HAGRAS H, et al. A fuzzy logic-based system for indoor localization using WiFi in ambient intelligent environments[J]. IEEE Transactions on Fuzzy Systems, 2013, 21(4): 702-718.
    LUOH L. ZigBee-based intelligent indoor positioning system soft computing[J]. Soft Comput., 2013, 18: 443-456.
    NI L M, LIU Yunhao, LAU Y C, et al. LANDMARC: indoor location sensing using active RFID[C]//Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, 2003, Fort Worth: [s.n.], 2003: 407-415
    SKVORTZOV V Y, LEE H K, BANG S, et al. Application of electronic compass for mobile robot in an indoor environment[C]//IEEE International Conference on Robotics and Automation. [S.l.]: IEEE, 2007: 2963-2970
    LI B, GALLAGHER T, DEMPSTER A G, et al, How feasible is the use of magnetic field alone for indoor positioning?[C]//2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN). Sydney: [s.n.], 2012: 1-9
    SUKSAKULCHAI S, THONGCHAI S, WILKES D M, et al. Mobile robot localization using an electronic compass for corridor environment[C/OL]//2000 IEEE International Conference on Systems, Man, and Cybernetics. Nashville: IEEE, 2000, 5: 3354-3359
    SIIKSAKULCHAI S, THONGCHAI S, WILKES D M, et al. Mobile robot localization using an electronic compass for corridor environment[C/OL]//IEEE International Conference on Systems, 2000[2017-12-12]. http://www8.cs.umu.se/research/ifor/dl/LOCALIZATION-NAVIGATION/Mobile%20Robot%20Localization%20using%20an%20Electronic%20Compass%20for%20Corridor.pdf
    Kim S E, Kim Y, Yoon J, et al. Indoor positioning system using geomagnetic anomalies for smartphones[C/OL]//2012 International Conference on Indoor Positioning and Indoor Navigation. Sydney: University of New South Wales, 2012[2017-10-22]. https://ieeexplore.ieee.org/abstract/document/6418947
    FRASSL M, ANGERMANN M, LICHTENSTERN M, et al. Magnetic maps of indoor environments for precise localization of legged and non-legged locomotion[C]//IEEE International Conference on Intelligent Robots and Systems. [S.l.]: IEEE, 2013: 913-920
    PUTTA R, MISRA M, KAPOOR D. Smartphone based indoor tracking using magnetic and indoor maps[C]//2015 IEEE Tenth International Conference on Intelligent Sensors, Sensor Networks and Information Processing. Singapore: IEEE, 2015: 7-9
    LI B, GALLAGHER T, RIZOS C, et al. Using geomagnetic field for indoor positioning[J]. J. Appl. Geod., 2013, 7: 299-308.
    RIEHLE T H, ANDERSON S M, LICHTER P A, et al. Indoor waypoint navigation via magnetic anomalies[C]//2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Boston: IEEE, 2011: 5315-5318
    黄鹤,赵焰,王春来,等. 地磁室内定位基准图数据采集系统设计[J]. 测绘通报,2017(2): 54-59.

    HUANG He, ZHAO Yan, WANG Chunlai, et al. Design of the acquisition system of indoor positioning reference map based on magnetic field data[J]. Bulletin of Surveying and Mapping, 2017(2): 54-59.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  383
  • HTML全文浏览量:  279
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-09
  • 修回日期:  2018-05-14
  • 网络出版日期:  2018-05-30
  • 刊出日期:  2019-06-01

目录

    /

    返回文章
    返回