• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

氮合金化HRB500E钢的静态再结晶行为试验研究

武尚文 吴光亮 张永集 孟征兵

武尚文, 吴光亮, 张永集, 孟征兵. 氮合金化HRB500E钢的静态再结晶行为试验研究[J]. 西南交通大学学报, 2019, 54(6): 1314-1322. doi: 10.3969/j.issn.0258-2724.20170918
引用本文: 武尚文, 吴光亮, 张永集, 孟征兵. 氮合金化HRB500E钢的静态再结晶行为试验研究[J]. 西南交通大学学报, 2019, 54(6): 1314-1322. doi: 10.3969/j.issn.0258-2724.20170918
WU Shangwen, WU Guangliang, ZHANG Yongji, MENG Zhengbing. Static Recrystallization Behavior of Nitrogen Alloyed HRB500E Steel[J]. Journal of Southwest Jiaotong University, 2019, 54(6): 1314-1322. doi: 10.3969/j.issn.0258-2724.20170918
Citation: WU Shangwen, WU Guangliang, ZHANG Yongji, MENG Zhengbing. Static Recrystallization Behavior of Nitrogen Alloyed HRB500E Steel[J]. Journal of Southwest Jiaotong University, 2019, 54(6): 1314-1322. doi: 10.3969/j.issn.0258-2724.20170918

氮合金化HRB500E钢的静态再结晶行为试验研究

doi: 10.3969/j.issn.0258-2724.20170918
基金项目: 国家自然科学基金资助项目(50971135)
详细信息
    作者简介:

    武尚文(1989—),男,博士研究生,研究方向为特种钢制造工艺与产品研发,E-mail:wsw-csu@csu.edu.cn

  • 中图分类号: TF777.4

Static Recrystallization Behavior of Nitrogen Alloyed HRB500E Steel

  • 摘要: 为了对相关热轧工艺制度的确定提供必要的理论依据,采用应力松弛法研究了氮合金化HRB500E钢的静态再结晶行为,运用Gleeble-1500D热模拟试验机分析了不同的应变量、应变温度、应变速率对试验钢静态再结晶的影响,并与普通的钒微合金化HRB500E钢进行了对比. 依据试验结果,以Avrami 方程为基础,建立了两种试验钢的静态再结晶动力学模型,并进行了静态再结晶分数曲线与模型预测值的对比检验. 研究结果表明,控制两种试验钢的应变量在0.4~1.0区间递增,应变温度在950~1 100 ℃范围内递增,应变速率在0.1~1.0 s−1范围内递增时,其t0.5值(再结晶完成50%所需要的时间)均分别随之减少,再结晶速度加快;其中,应变量及应变温度对试验钢静态再结晶的影响较为显著,应变速率次之. 在应变条件相同的情况下,氮合金化HRB500E钢静态再结晶进程滞后于钒微合金化HRB500E钢. 检验结果表明,两种试验钢静态再结晶动力学模型预测结果与试验结果较吻合.

     

  • 图 1  试验钢的初始奥氏体组织

    Figure 1.  Initial austenite microstructure of test steels

    图 2  应力松弛曲线

    Figure 2.  Stress relaxation curve

    图 3  应力松弛试验热模拟示意

    Figure 3.  Stress relaxation test for thermal simulation

    图 4  应力松弛曲线

    Figure 4.  Stress relaxation curves for samples with different strain capacities

    图 5  再结晶动力学曲线

    Figure 5.  Recrystallization kinetics curves with different strain capacities

    图 6  t0.5与应变量关系曲线

    Figure 6.  Relationships between t0.5 and strain capacity

    图 7  应力松弛曲线

    Figure 7.  Stress relaxation curves for samples at different temperatures

    图 8  再结晶动力学曲线

    Figure 8.  Recrystallization kinetics curves at different temperatures

    图 9  t0.5与应变温度关系曲线

    Figure 9.  Relationships between t0.5 and strain temperature

    图 10  应力松弛曲线

    Figure 10.  Stress-relaxation curves for samples with different strain rates

    图 11  再结晶动力学曲线

    Figure 11.  Rrecrystallization kinetics curves with different strain rates

    图 12  t0.5与应变速率关系曲线

    Figure 12.  Relationships between t0.5 and strain rate

    图 13  lg t与lg(−ln(1−f))关系曲线

    Figure 13.  Relation curves of lg t与lg(−ln(1−f))

    图 14  预测值与试验值对比图

    实线为预测值;符号为测试值

    Figure 14.  Comparisons between predicted and experimental values

    图 15  相对误差对比

    Figure 15.  Comparison of relative errors

    表  1  试样铸坯实时参数及主要成分

    Table  1.   Main components and real-time parameters of samples in continous casting

    样品拉速/(m•min−1)热度/℃C/%Si/%Mn/%P/%S/%V/%N/%Ti/%
    1#2.8240.2100.3501.4900.0280.0320.0780.0110.005
    2#2.8200.2300.5401.5600.0330.0260.1100.005
    下载: 导出CSV
  • HWANG B, SHIM J H, LEE M G, et al. Technical developments and trends of earthquake resisting high-strength reinforcing steel bars[J]. Journal of the Korean Institute of Metals and Materials, 2016, 54(12): 862-874.
    CHENG M Y, HUNG S C, LEQUESNE R D, et al. Earthquake-resistant squat walls reinforced with high-strength steel[J]. Aci Structural Journal, 2016, 113(5): 1065-1076.
    SHI G, HU F, SHI Y. Recent research advances of high strength steel structures and codification of design specification in China[J]. International Journal of Steel Structures, 2014, 14(4): 873-887. doi: 10.1007/s13296-014-1218-7
    DING H, LIU Y, GUO Y, et al. Seismic behavior study on concrete structures reinforced with high-strength steel bars[J]. Building Structure, 2015: 3-34.
    ALAEE P, LI B. High-strength concrete exterior beam-column joints with high-yield strength steel reinforcements[J]. Journal of Structural Engineering, 2017, 145(7): 305-321.
    CHEN W, SHI Z, ZHAO Y. Research of HRB500E high-strength earthquake-proof bars produced by VN alloy and MnSiN12 process[J]. Hot Working Technology, 2010, 39(4): 35-39.
    WINZER N, ROTT O, THIESSEN R, et al. Hydrogen diffusion and trapping in Ti-modified advanced high strength steels[J]. Materials & Design, 2016, 92: 450-461.
    CHEN W, CAO J, YANG Y, et al. Investigation on the strengthening and toughening mechanism of 500 MPa V-Nb microalloyed anti-seismic rebars[J]. Materials Science, 2015, 21(4): 536-542.
    CHEN W, SHI Z, ZHAO Y. Strengthening and toughening mechanism of HRB500 anti-seismic rebars with Nb microalloyed and controlled cooling process[J]. Journal of Central South University, 2011, 42(6): 1604-1610.
    XIANG Y, LAN L, ZHANG C, et al. Composition optimization and mechanical properties control for 500 MPa high strength ribbed bars[M]. [S.l.]: John Wiley & Sons, Inc., 2016: 967-972.
    ZHANG J, WANG F M, YANG Z B, et al. Microstructure,precipitation,and mechanical properties of V-N alloyed steel after different cooling processes[J]. Metallurgical & Materials Transactions A, 2016, 47(12): 6621-6631.
    JIAO Z, LIU C T. Ultrahigh-strength steels strengthened by nanoparticles[J]. Science Bulletin, 2017(15): 1043-1044.
    MIRZADEH H, CABRERA J M, PRADO J M, et al. Hot deformation behavior of a medium carbon microalloyed steel[J]. Materials Science & Engineering A, 2011, 528(10): 3876-3882.
    PENTTI K L, PERTTULA J. Characteristics of static and metadynamic recrystallization and strain accumulation in hot-deformed austenite as revealed by the stress relaxation method[J]. ISIJ International, 1996, 36(6): 729-736. doi: 10.2355/isijinternational.36.729
    CHO S H, KANG K B, JONAS J J. Effect of manganese on recrystallisation kinetics of niobium microalloyed steel[J]. Materials Science & Technology, 2013, 18(4): 389-395.
    MEDINA S F, MANCILLA J E. Static recrystallization modelling of hot deformed steels containing severl alloying elements[J]. ISIJ International, 1996, 36(8): 1070-1076. doi: 10.2355/isijinternational.36.1070
    ELWAZRI A M, WANJARA P, YUE S. Metadynamic and static recrystallization of hypereutectoid steel[J]. ISIJ International, 2003, 43(7): 1080-1088. doi: 10.2355/isijinternational.43.1080
    周晓锋. 钒对20MnSi钢的热变形再结晶的影响[J]. 塑性工程学报,2007,14(1): 20-23. doi: 10.3969/j.issn.1007-2012.2007.01.005

    ZHOU Xiaofeng. Effect of vanadium on hot deformation recrystallization of 20MnSi steel[J]. Journal of Plasticity Engineering, 2007, 14(1): 20-23. doi: 10.3969/j.issn.1007-2012.2007.01.005
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  319
  • HTML全文浏览量:  191
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-27
  • 修回日期:  2018-06-13
  • 网络出版日期:  2018-06-20
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回