• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于可靠度的桥梁构件三维地震易损性分析

单德山 顾晓宇 董俊 李乔

单德山, 顾晓宇, 董俊, 李乔. 基于可靠度的桥梁构件三维地震易损性分析[J]. 西南交通大学学报, 2019, 54(5): 885-896. doi: 10.3969/j.issn.0258-2724.20170881
引用本文: 单德山, 顾晓宇, 董俊, 李乔. 基于可靠度的桥梁构件三维地震易损性分析[J]. 西南交通大学学报, 2019, 54(5): 885-896. doi: 10.3969/j.issn.0258-2724.20170881
SHAN Deshan, GU Xiaoyu, DONG Jun, LI Qiao. 3D Seismic Vulnerability Analysis of Bridge Structural Components Based on Reliability[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 885-896. doi: 10.3969/j.issn.0258-2724.20170881
Citation: SHAN Deshan, GU Xiaoyu, DONG Jun, LI Qiao. 3D Seismic Vulnerability Analysis of Bridge Structural Components Based on Reliability[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 885-896. doi: 10.3969/j.issn.0258-2724.20170881

基于可靠度的桥梁构件三维地震易损性分析

doi: 10.3969/j.issn.0258-2724.20170881
基金项目: 国家重点研发计划资助项目(2016YFC0802202);国家自然科学基金资助项目(51678489);四川省科技计划资助项目(2016JY0130)
详细信息
    作者简介:

    单德山(1969—),男,教授,博士,研究方向为桥梁结构健康监测与损伤识别、大跨度桥梁施工控制,E-mail:dsshan@163.com

  • 中图分类号: U448

3D Seismic Vulnerability Analysis of Bridge Structural Components Based on Reliability

  • 摘要: 为了评估桥梁结构近场抗震性能,建立了桥梁构件的三维地震易损性分析流程. 基于工程结构可靠度理论,用构件三维失效曲面表征墩柱、支座构件的损伤状态,将包含多个单一损伤指标的损伤状态方程作为三维地震易损性分析的损伤指标;其次在既有墩柱弯曲和剪切失效曲面研究的基础上,构建了墩柱弯曲和剪切破坏的损伤状态方程;并基于支座地震损伤的相对变形,建立了支座损伤状态的方程. 在此基础上,构建了墩柱和支座三维地震损伤状态的判别准则,并对不同损伤状态进行了量化. 结合各国桥梁抗震设计规范和工程结构可靠度理论,最后实现了三维地震易损性的计算分析. 通过一维地震易损性的简化验证,表明所提方法可用于桥梁结构的地震易损性分析中,并且所得结果与PSDA (probabilistic seismic demand analysis)法的最大概率偏差小于4%.

     

  • 图 1  墩柱各剪切损伤状态的关系曲线

    Figure 1.  Relationship curve for various shear damage states of pier

    图 2  支座损伤状态示意

    Figure 2.  Schematic damage state of bearing

    图 3  桥梁构件三维地震易损性分析流程

    Figure 3.  Flowchart for 3D fragility analysis of bridge components

    图 4  某铁路刚构-连续组合桥梁

    Figure 4.  A continuous rigid frame railway bridge

    图 5  桥台模拟示意

    Figure 5.  Abutment simulation schematic

    图 6  桥梁结构有限元计算模型

    Figure 6.  Schematic diagram of bridge structural finite element model

    图 7  1#桥墩墩底截面4种弯曲损伤状态的损伤判别曲面

    Figure 7.  Bending damage critical surface for 4 different damage states of bottom section for pier 1#

    图 8  1# 墩墩底截面4种剪切损伤状态对应的损伤判别曲面

    Figure 8.  Shearing damage critical surface for 4 different damage states of bottom section for pier 1#

    图 9  2# 墩底截面轻微损伤两种损伤指标的需求模型

    Figure 9.  Demand model for two types of damage indexes of 2# pier bottom section

    图 10  两种算法的易损性曲线及其概率偏差

    Figure 10.  Vulnerability curves derived from two different algorithms and their probability deviations

    图 11  水平地震动输入方向示意

    Figure 11.  Input direction of horizontal ground motion

    图 12  墩底截面轻微损伤状态的弯曲易损性曲面

    Figure 12.  Bending vulnerability surfaces of pier bottom sections in minor damage state

    图 13  0# 台支座轻微损伤状态的易损性曲面

    Figure 13.  Vulnerability surfaces of bearings in minor damage state( 0#)

    图 14  1# 台支座轻微损伤状态的易损性曲面

    Figure 14.  Vulnerability surfaces of bearings in minor damage state( 1#)

    图 15  4# 台支座轻微损伤状态的易损性曲面

    Figure 15.  Vulnerability surfaces of bearings in minor damage state( 4#)

    表  1  墩柱剪切破坏的损伤判别准则

    Table  1.   Criteria of pier shear damage

    损伤状态描述指标
    无损仅出现微小裂缝0 < VQc1
    轻微微裂缝明显增多,
    保护层轻微剥落
    Qc1 < V ≤Qc
    中等出现首条完整的斜裂缝(临界斜
    裂缝),保护层剥落
    Qc < V ≤Qcs
    严重裂缝数量明显增加,出现较宽的
    完整斜裂缝,保护层大面积剥落
    Qcs < V ≤ Qu
    完全箍筋断裂,核心混
    凝土压碎
    Qu < Q
    下载: 导出CSV

    表  2  支座顺桥向的地震损伤判别准则

    Table  2.   Longitudinal seismic damage criterion for bearings

    损伤
    状态
    描述指标
    无损远离,上支座板位移小于设计位移值0 < d < ds
    轻微远离,上支座板位移小于其边缘
    到衬板边缘间的距离
    ds < ddm
    中等远离,上支座板位移小于其边缘
    到衬板中心间的距离
    dm < dde
    严重远离,上支座板位移小于其边缘到衬板另一侧边缘间的距离de < ddc
    完全远离,上支座板已从衬板滑落d > dc
    下载: 导出CSV

    表  3  结构参数分布类型及分布特征值

    Table  3.   Distribution types of structural parameters and their characteristic values

    结构参数分布类型分布参数
    P1P2
    混凝土极限应变 对数正态 0.004 0.001
    C35混凝土抗压强度/MPa 正态 28 4.5
    C40混凝土抗压强度/MPa 正态 32 4.27
    混凝土强度缩放系数 均匀 1.08 1.32
    钢筋屈服强度/MPa 对数正态 5.99 0.1
    钢筋应变硬化系数 均匀 0.04 0.06
    钢筋弹性模量/GPa 对数正态 200 10.35
    二期恒载缩放系数 均匀 0.9 1.1
    混凝土容重/(kg•m–3) 均匀 22 500 27 500
    支座水平承载力缩放系数 均匀 0.8 1.2
    下载: 导出CSV

    表  4  支座损伤指标

    Table  4.   Damage index values of bearings

    类别损伤状态0# 台支座1# 墩支座4# 墩支座
    纵向 无损 D ≤ 150 D ≤ 100 D ≤ 100
    轻微 150 < D ≤ 325 100 < D ≤ 430 100 < D ≤ 275
    中等 325 < D ≤ 635 430 < D ≤ 1 225 275 < D ≤ 585
    严重 635 < D ≤ 945 1 225 < D ≤ 2 020 585 < D ≤ 895
    完全 D > 945 D > 2 020 D > 895
    横向 无损 D ≤ 20 D ≤ 20 D ≤ 20
    轻微 20 < D ≤ 135 20 < D ≤ 280 20 < D ≤ 135
    中等 135 < D ≤ 445 280 < D ≤ 1 075 135 < D ≤ 445
    严重 445 < D ≤ 755 1 075 < D ≤ 1 870 445 < D ≤ 755
    完全 D > 755 D > 1 870 D > 755
    下载: 导出CSV

    表  5  构件概率地震需求模型参数表

    Table  5.   Parameters of probabilistic seismic demand model for components

    构件名称损伤指标标准差拟合优度 R2
    2# 墩底截面 φx 0.725 0.811
    Z 0.437 0.895
    4# 墩底截面 φx 0.516 0.857
    Z 0.445 0.867
    1# 墩支座 d 0.361 0.918
    Z 0.421 0.923
    下载: 导出CSV
  • 单德山,张二华,董俊,等. 汶川地震动衰减特性及其大跨高墩连续刚构桥的地震响应规律[J]. 土木工程学报,2017,50(4): 107-115.

    SHAN Deshan, Zhang Erhua, Dong Jun, et al. Ground motion attenuation characteristics of Wenchuan earthquake and seismic response law of long-span continuous rigid frame bridge with high-rise pier[J]. China Civil Engineering Journal, 2017, 50(4): 107-115.
    THEODOULIDIS N, KARAKOSTAS C, LEKIDIS V, et al. The Cephalonia,Greece,January 26(M6.1)and February 3,2014(M6.0)earthquakes:near-fault ground motion and effects on soil and structures[J]. Bulletin of Earthquake Engineering, 2016, 14(1): 1-38. doi: 10.1007/s10518-015-9807-1
    BILLAH A H M, ALAM M S. Seismic fragility assessment of highway bridges:a state-of-the-art review[J]. Structure and Infrastructure Engineering, 2015, 11(6): 804-832. doi: 10.1080/15732479.2014.912243
    GIDARIS I, PADGETT J E, BARBOSA A R, et al. Multiple-hazard fragility and restoration models of highway bridges for regional risk and resilience assessment in the united states:state-of-the-art review[J]. Journal of Structural Engineering, 2017, 143(3): 04016188. doi: 10.1061/(ASCE)ST.1943-541X.0001672
    STEFANIDOU S P, KAPPOS A J. Methodology for the development of bridge-specific fragility curves[J]. Earthquake Engineering & Structural Dynamics, 2017, 46(1): 73-93.
    董俊,单德山,张二华,等. 非规则桥梁近、远场地震易损性对比分析[J]. 哈尔滨工业大学学报,2016,48(3): 159-165. doi: 10.11918/j.issn.0367-6234.2016.03.027

    DONG Jun, SHAN Deshan, ZHANG Erhua, et al. Near and far-field seismic fragility comparative analysis of irregular bridge[J]. Journal of Harbin Institute of Technology, 2016, 48(3): 159-165. doi: 10.11918/j.issn.0367-6234.2016.03.027
    BILLAH A H M M, ALAM M S, BHUIYAN M A R. Fragility analysis of retrofitted multicolumn bridge bent subjected to near-fault and far-field ground motion[J]. Journal of Bridge Engineering, 2013, 18(10): 992-1004. doi: 10.1061/(ASCE)BE.1943-5592.0000452
    LIN C J, HUNG H, LIU K, et al. Reconnaissance observation on bridge damage caused by the 2008 Wenchuan (China) earthquake[J]. Earthquake Spectra, 2010, 26(4): 1057-1083. doi: 10.1193/1.3479947
    KAWASHIMA K, TAKAHASHI Y, GE H, et al. Damage of bridges in 2008 Wenchuan,China,earthquake[J]. Journal of Earthquake Engineering, 2009, 13: 956-998.
    LI Jianzhong, PENG Tianbo, XU Yan. Damage investigation of girder bridges under the Wenchuan earthquake and corresponding seismic design recommendations[J]. Earthquake Engineering and Engineering Vibration, 2008, 7(4): 337-344. doi: 10.1007/s11803-008-1005-6
    KHALED M. Safety and reliability of bridge structures[M]. New York : CRC Press, 2009: 335-348
    中华人民共和国交通运输部. 公路桥梁抗震设计细则: JTG/T B02-01—2008[S]. 北京: 人民交通出版社, 2008
    California Department of Transportation (Caltrans). Seismic design criteria: version1.6[S]. California: [s.n.], 2010
    BRESLER B. Design criteria for reinforced concrete columns under axial load and biaxial bending[J]. ACI Journal, 1960, 57(11): 481-490.
    VECCHIO F, COLLINS M. The modified compression-field theory for reinforced concrete eleImproving the performance of sodium silicate for track slab by promoting polymerization and biomineralizationments subjected to shear[J]. ACI Structural Journal, 1986, 83(1): 19-31.
    JANGID R S. Seismic reponse of sliding structures to bidirectional earthquake excitation[J]. Earthquake Engineering and Structural Dynamics, 1996, 25(11): 1301-1305. doi: 10.1002/(ISSN)1096-9845
    PARK H G, YU E J, CHOI K. Shear strength degradation model for rc columns subjected to cyclic loading[J]. Engineering Structures, 2012, 34(1): 187-197.
    PARK R, PAULAY T. Reinforced concrete structures[M]. New York: John Wiley & Sons, 1975: 118-194
    赵国藩. 高等钢筋混凝土结构学[M]. 北京: 机械工业出版社, 2005: 16-127
    PRIESTLEY M J N, VERMA R, XIAO Y. Seismic shear strength of reinforced concrete columns[J]. ASCE Journal of Structural Engineering, 1994, 120(8): 2310-2329.
    PRIESTLEY M J N, SEIBLE F, CALVI G M. Seismic design and retrofit of bridges[M]. New York: John Wiley & Sons, 1996: 280-347
    RICLES J M.YANG Y S, PRIESTLEY M J N. Modeling non-ductile R/C columns for seismic analysis of bridges[J]. Journal of Structural Engineering, 1998, 124(4): 415-425. doi: 10.1061/(ASCE)0733-9445(1998)124:4(415)
    GALAL K E, GHOBARAH A. Flexural and shear hysteretic behaviour of reinforced concrete columns with variable axial load[J]. Engineering Structures, 2003, 25(1): 1353-1367.
    中华人民共和国铁道部. 铁路工程抗震设计规范: GB 50111—2006[S]. 北京: 中国计划出版社, 2006
    铁道部第三勘测设计院. 铁路桥涵地基和基础设计规范: TB10002.5—2005[S]. 北京: 中国铁道出版社, 2005
    BAKER J W. Quantitative classification of near-fault ground motions using wavelet analysis[J]. Bulletin of the Seismological Society of America, 2007, 99(5): 1486-1501.
    MEHDIZADEH M. Uncertainty treatment in performance based seismic assessment of typical bridge classes in united states[D]. Orlando: University of Central Florida, 2014
    ALAM M S, BHUIYAN M A R, BILLAH A H M M. Seismic fragility assessment of sma-bar restrained multi-span continuous highway bridge isolated by different laminated rubber bearings in medium to strong seismic risk zones[J]. Bulletin of Earthquake Engineering, 2012, 10(6): 1885-1909. doi: 10.1007/s10518-012-9381-8
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  580
  • HTML全文浏览量:  277
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-10
  • 修回日期:  2018-05-21
  • 网络出版日期:  2019-03-30
  • 刊出日期:  2019-10-01

目录

    /

    返回文章
    返回