• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

负重型外骨骼机器人液压阀块流道的流场分析及优化

王海波 范曙远 张龙

王海波, 范曙远, 张龙. 负重型外骨骼机器人液压阀块流道的流场分析及优化[J]. 西南交通大学学报, 2019, 54(4): 848-854. doi: 10.3969/j.issn.0258-2724.20170879
引用本文: 王海波, 范曙远, 张龙. 负重型外骨骼机器人液压阀块流道的流场分析及优化[J]. 西南交通大学学报, 2019, 54(4): 848-854. doi: 10.3969/j.issn.0258-2724.20170879
WANG Haibo, FAN Shuyuan, ZHANG Long. Flow Field Analysis and Optimization for Internal Channel of Hydraulic Manifold Block in Lower Extremity Exoskeleton Robot[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 848-854. doi: 10.3969/j.issn.0258-2724.20170879
Citation: WANG Haibo, FAN Shuyuan, ZHANG Long. Flow Field Analysis and Optimization for Internal Channel of Hydraulic Manifold Block in Lower Extremity Exoskeleton Robot[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 848-854. doi: 10.3969/j.issn.0258-2724.20170879

负重型外骨骼机器人液压阀块流道的流场分析及优化

doi: 10.3969/j.issn.0258-2724.20170879
基金项目: 国家自然科学基金资助项目(51205329);中央高校基本科研业务费科技创新项目(2682015CX036)
详细信息
    作者简介:

    王海波(1980—),男,博士研究生,研究方向为机电液伺服控制系统,E-mail:haibowang@home.swjtu.edu.cn

  • 中图分类号: TH137;TP242;

Flow Field Analysis and Optimization for Internal Channel of Hydraulic Manifold Block in Lower Extremity Exoskeleton Robot

  • 摘要: 为了研究负重型外骨骼液压动力单元温升及噪声过大的问题,利用ANSYS Fluent软件对负重型外骨骼液压阀块内部流道主要组成部分Z型流道和交叉流道进行计算流体动力学仿真,分别设计了5组不同尺寸的仿真试验,分析不同流道尺寸下流体速度稳定性与压力损失变化情况. 仿真试验表明,对于流道直径为5 mm的外骨骼动力单元液压阀块交叉流道压力损失随着进出口流道偏心距的增大而增大,流体速度在偏心距为 1.25 mm时稳定性最好;Z型流道压力损失在进出口流道之间的距离为 17 mm时达到最小,流体速度随着该距离的增大其稳定性上升. 优化过后的样机试验表明,液压阀块最大温度下降了3.3 ℃,最大噪声下降了7.6 dB.

     

  • 图 1  负重外骨骼液压集成块

    Figure 1.  Hydraulic manifold of lower extremity eoskeletonx

    图 2  集成块流道简图

    Figure 2.  Diagram of hydraulic manifold channels

    图 3  交叉型流道插值曲线

    Figure 3.  Interpolation curves of the cross-channel

    图 4  交叉流道流体流向简图

    Figure 4.  Flow direction in cross-channel

    图 5  A1组流速等线图

    Figure 5.  Velocity isograph of Group A1

    图 6  交叉型流道出口流道速度分布

    Figure 6.  Flow velocity distribution at cross-channel outlet

    图 7  Z型流道插值曲线

    Figure 7.  Interpolation curves of Z-channel

    图 8  Z型流道速度迹线

    Figure 8.  Velocity path line of Z-channel

    图 9  负重外骨骼助力机器人样机

    Figure 9.  Prototype model of lower extremity exoskeleton robot

    图 10  测量工具

    Figure 10.  Measuring tools

    表  1  交叉型流道仿真结果

    Table  1.   Simulations results of cross-channel

    分组w/mm压力损失/Pa最大流速/(m•s–1
    A10.0029 0699.009
    A21.2530 4118.742
    A32.5035 2108.930
    A43.2542 5139.260
    A54.0069 91711.992
    下载: 导出CSV

    表  2  Z型流道仿真结果

    Table  2.   Simulations results of Z-channel

    分组h/mm压力损失/Pa最大流速/(m•s–1
    B11049 20810.661
    B21546 7759.478
    B32046 7298.900
    B42547 5828.884
    B53048 8568.866
    下载: 导出CSV

    表  3  样机试验结果

    Table  3.   Test results of prototypes

    动力单元30 min 时温度/℃最大噪音/dB
    55.873.4
    52.565.8
    下载: 导出CSV
  • STEGER R, KIM S H, KAZEROONI H. Control scheme and networked control architecture for the Berkeley lower extremity exoskeleton (BLEEX)[C]// IEEE International Conference on Robotics and Automation. [S.l.]: IEEE, 2006: 3469-3476
    ZOSS A B, KAZEROONI H, CHU A. Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX)[J]. IEEE/ASME Transactions on Mechatronics, 2006, 11(2): 128-138. doi: 10.1109/TMECH.2006.871087
    周加永,张昂,莫新民,等. 液压驱动型负重外骨骼机器人液压系统设计[J]. 机床与液压,2016(21): 30-34. doi: 10.3969/j.issn.1001-3881.2016.21.007

    ZHOU Jiayong, ZHANG Ang, MO Xinmin, et al . Hydraulic system design of hydraulic-driven load exoskeleton robot[J]. Machine Tool & Hydraulics, 2016(21): 30-34. doi: 10.3969/j.issn.1001-3881.2016.21.007
    AMUNDSON K, RAADE J, HARDING N, et al. Hybrid hydraulic-electric power unit for field and service robots[C]// IEEE/RSJ International Conference on Intelligent Robots and Systems. [S.l.]: IEEE, 2005: 3453-3458
    WANG Zhixin. Raytheon launched XOS2 second-generation exoskeleton device[J]. Light Weapons, 2010, 24: 44.
    GHAN J, STEGER R, KAZEROONI H. Control and system identification for the Berkeley lower extremity exoskeleton (BLEEX)[J]. Advanced Robotics, 2006, 20(9): 989-1014. doi: 10.1163/156855306778394012
    王超,王玉林,宋慧新. 人体助力行走机器人关键技术分析[J]. 车辆与动力技术,2014,1(1): 53-57.

    WANG Chao, WANG Yulin, SONG Huixin. Key technologies analysis of human stepped power assist device[J]. Vehicle & Power Technology, 2014, 1(1): 53-57.
    高殿荣,王益群. 液压集成块内弯曲流道流场数值计算与分析[J]. 机床与液压,2001(6): 34-35. doi: 10.3969/j.issn.1001-3881.2001.06.014

    GAO Dianrong, WANG Yiqun. Numerical calculation and analysis of curved flow field in hydraulic integration block[J]. Machine Tool & Hydraulics, 2001(6): 34-35. doi: 10.3969/j.issn.1001-3881.2001.06.014
    林义忠,陈丽莉,张忠南. 液压集成块典型转弯孔道流场仿真分析[J]. 机床与液压,2012(5): 134-137. doi: 10.3969/j.issn.1001-3881.2012.05.042

    LIN Yizhong, CHEN Lili, ZHANG Zhongnan. Simulation and analysis of flow field of typical turning channel inside hydraulic manifold block[J]. Machine Tool & Hydraulics, 2012(5): 134-137. doi: 10.3969/j.issn.1001-3881.2012.05.042
    林义忠,唐忠盛,黄光永,等. 液压集成块直角孔道局部压力损失的仿真及实验研究[J]. 机床与液压,2012(23): 38-41. doi: 10.3969/j.issn.1001-3881.2012.23.010

    LIN Yizhong, TANG Zhongsheng, HUANG Guangyong, et al. Simulation and experimental study of local pressure loss at right angle channel inside hydraulic manifold blocks[J]. Machine Tool & Hydraulics, 2012(23): 38-41. doi: 10.3969/j.issn.1001-3881.2012.23.010
    吴正坤,赵毅红,吕宵宵,等. 基于Fluent液压集成块内部流场数据仿真[J]. 机械工程与自动化,2014(6): 76-77,80. doi: 10.3969/j.issn.1672-6413.2014.06.031

    WU Zhengkun, ZHAO Yihong, LÜ Xiaoxiao, et al. Fluent-based numerical simulation of internal flow field of hydraulic manifold[J]. Mechanical Engineering and Automation, 2014(6): 76-77,80. doi: 10.3969/j.issn.1672-6413.2014.06.031
    付永领, 阳加远, 朱德明. 基于Fluent的电液泵流场与温度场有限元分析[J]. 北京航空航天大学学报, 2017, 43(8): 1647-1653

    FU Yongling, YANG Jiayuan, ZHU Deming. Finite element analysis of flow field and temperature field of electro-hydraulic pump by Fluent[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(8): 1647-1653
    吴健兴,路芳,吴昌锋. 基于CFD的液压多路阀阀后压力补偿回路流道流场仿真研究[J]. 液压气动与密封,2017,37(5): 6-7, 12. doi: 10.3969/j.issn.1008-0813.2017.05.002

    WU Jianxing, LU Fang, WU Changfeng. Research on the flow-channel's flow-field of the pressure-compensated circuit for the load sensitive multi-way valve based on CFD[J]. Hydraulics Pneumatics & Seals, 2017, 37(5): 6-7, 12. doi: 10.3969/j.issn.1008-0813.2017.05.002
    侯占勇,胡军科,周创辉. 混凝土泵高低压切换阀典型管网液流特性[J]. 长安大学学报(自然科学版),2014(6): 168-174. doi: 10.3969/j.issn.1671-8879.2014.06.025

    HOU Zhanyong, HU Junke, ZHOU Chuanghui. Flowing characteristics of typical pipeline network of pressure switching valve block in concrete pump[J]. Journal of Chang'an University (Natural Science Edition), 2014(6): 168-174. doi: 10.3969/j.issn.1671-8879.2014.06.025
    田瑞峰, 刘平安. 传热与流体流动的数值计算[M]. 哈尔滨: 哈尔滨工程大学出版社, 2015: 211-234
    任国志. 某船舶操舵系统液压噪声控制的理论建模与仿真研究[D]. 武汉: 华中科技大学, 2006
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  423
  • HTML全文浏览量:  223
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-21
  • 修回日期:  2018-03-02
  • 网络出版日期:  2018-03-21
  • 刊出日期:  2019-08-01

目录

    /

    返回文章
    返回