Multi-View Image Precise Texture Mapping Method Based on Frame Buffer
-
摘要: 三维建筑物模型纹理映射方法通常针对单独平面选取单一影像投影,然而单张关联影像通常存在部分遮挡问题,影响纹理映射质量. 为此,本文提出一种基于帧缓存纹理绘制技术的多角度影像精准纹理映射方法. 首先将单体化精细建筑模型和倾斜摄影测量解决方案生成的三角网模型配准,再根据建筑模型空间特征进行纹理绘制基元提取;然后根据纹理绘制基元对三角网模型生成虚拟渲染相机,利用帧缓存纹理绘制方法,获取帧缓存对象并提取纹理,最后通过纹理绘制基元映射到精细建筑物模型表面,实现三角网模型到精细单体化建筑模型的自动纹理映射. 利用倾斜摄影测量数据进行实验,实验结果表明,相比传统方法,本文方法减少了14%以上的不良纹理比率,纹理空间压缩率达到14.21%,且具有更精确的纹理映射效果,能满足精细建筑模型的纹理重建需求.Abstract: Detailed texture mapping methods for building 3D models normally select the best matching image for each single face. However, face associated single images often have partial occlusion problems that impact the quality of mapped textures. An accurate multi-view image texture mapping method based on frame buffer rendering is presented here. First, the coordinates of the single independent building model and the triangle mesh model produced using oblique photogrammetric data were registered. Following this, rendering primitives based on spatial characteristics of the single independent building model were extracted. Subsequently, rendering cameras for the triangle mesh model were established depending on the rendering primitives. Using the Render to Texture (RTT) method, textures corresponding to rendering primitives from a frame buffer object (FBO) are obtained while rendering the triangle mesh model using the rendering cameras. Finally, the textures of the surface of a detailed building model were remapped using rendering primitives, and automatic texture mapping was achieved from the triangle mesh model to form a detailed single independent building model. The usage of oblique photogrammetry data demonstrates that the occupation of the defective textures is reduced by over 14% using our proposed method compared to the traditional method, and the size of the textures were compressed to 14.21% with more accurate texture mapping quality, thereby satisfying the texture reconstruction requirements for a detailed building model.
-
Key words:
- photogrammetry /
- detailed building 3D reconstruction /
- frame buffer /
- texture mapping /
- computer vision
-
表 1 模型纹理对比
Table 1. Comparison between model textures
模型 纹理基元类型 纹理基元/个 纹理/张 不良纹理比率/% 纹理可否编辑 三角网 不规则三角格网 约60 000 1 否 基于影像方法纹理映射 面元 541 541 > 20 是 基于帧缓存方法纹理映射 纹理绘制基元 349 1 < 6 是 -
刘洋. 无人机倾斜摄影测量影像处理与三维建模的研究[D]. 南昌: 东华理工大学, 2016 HAALA N, KADA M. An update on automatic 3D building reconstruction[J]. Isprs Journal of Photogrammetry & Remote Sensing, 2010, 65(6): 570-580. 孙春生,吴军,陈丹清. 三维城市建模中的建筑墙面纹理快速获取[J]. 武汉大学学报 (信息科学版),2005,30(9): 766-770.SUN Chunsheng, WU Jun, CHEN Danqing. Rapid texture retrivement for building-wall in 3d city model[J]. Geomatics and Information Science of Wuhan University, 2005, 30(9): 766-770. 桂德竹,林宗坚,张成成. 倾斜航空影像的城市建筑物三维模型构建研究[J]. 测绘科学,2012,37(4): 140-142.GUI Dezhu, LIN Zongjian, ZHANG Chengcheng. Research on construction of 3D building based on oblique images from UAV[J]. Science of Surveying and Mapping, 2012, 37(4): 140-142. WANG M, BAI H, HU F. Automatic texture acquisition for 3D model using oblique aerial images[C]//International Conference on Intelligent Networks and Intelligent Systems. Wuhan: IEEE, 2008: 495-498 HAALA N, KADA M. Panoramic scenes for texture mapping of 3d city models[C]//International Archives of Photogrammetry and Remote Sensing. Berlin: [s.n.], 2005, XXXVI-5/W8: 1-6 李明,张卫龙,范丁元. 城市三维重建中的自动纹理优化方法[J]. 测绘学报,2017,46(3): 338-345.LI Ming, ZHANG Weilong, FAN Dingyuan. Automatic texture optimization for 3D urban reconstruction[J]. Acta Geodaetica Et Cartographica Sinica, 2017, 46(3): 338-345. 张春森,张卫龙,郭丙轩,等. 倾斜影像的三维纹理快速重建[J]. 测绘学报,2015,44(7): 782-790.ZHANG Chunsen, ZHANG Weilong, GUO Binxuan, et al. Rapidly 3D texture reconstruction based on oblique photography[J]. Acta Geodaetica Et Cartographica Sinica, 2015, 44(7): 782-790. 李媛,胡翰,谢金华,等. 局部区域表面一致性约束的三维模型纹理映射方法[J]. 武汉大学学报 (信息科学版),2016,41(12): 1599-1604.LI Yuan, HU Han, XIE Jinhua, et al. An automatic texture mapping method using local surface consistency constraint[J]. Geomatics and Information Science of Wuhan University, 2016, 41(12): 1599-1604. RAN G, WEXLER Y, OFEK E, et al. Seamless montage for texturing models[J]. Computer Graphics Forum, 2010, 29(2): 479-486. doi: 10.1111/j.1467-8659.2009.01617.x 潘国荣,赵鹏飞. 基于空间向量的三维基准转换模型[J]. 大地测量与地球动力学,2009,29(6): 79-82.PANG Guorong, ZHAO Pengfei. 3D datum transformation model based on space vector[J]. Journal of Geodesy and Geodynamics, 2009, 29(6): 79-82. MCIVOR A M, WALTENBERG P T. Recognition of simple curved surfaces from 3D surface data[M]. Berlin: Springer, 1998: 434-441 FÜNFZIG C, FELLNER D W. Easy realignment of k-DOP bounding volumes[C]//Graphics Interface. Nova Scotia: Citeseer, 2003: 257-264 SZELISKI R. Computer vision: algorithms and applications[M]. New York: Springer-Verlag, 2010: 39-60 BAER S. Essentials of interactive computer graphics: concepts and implementation[M]. Boca Raton: CRC Press, 2008: 311-334 AKENINEMOLLER T, HAINES E, HOFFMAN N. Real-time rendering[M]. Natick: A. K. Peters Limited, 2008: 163-173 JYLÄNKI J. A thousand ways to pack the bin-a practical approach to two-dimensional rectangle bin packing[EB/OL]. (2010-02-27)[2017-11-10]. http://clb.demon.fi/files/RectangleBinPack.pdf BANSAL N, KHAN A. Improved approximation algorithm for two-dimensional bin packing[C]//Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms. Portland: ACM, 2014: 13-25 张剑清,贺少军,苏国中. 三维模型重建中影像纹理重组织方法研究[J]. 武汉大学学报(信息科学版),2005,30(2): 115-117.ZHANG Jianqing, HE Shaojun, SU Guozhong. Application of image texture reorganization to 3D model reconstruction[J]. Geomatics and Information Science of Wuhan University, 2005, 30(2): 115-117. CHAN T F, SHEN J. Nontexture inpainting by curvature-driven diffusions[J]. Journal of Visual Communication and Image Representation, 2001, 12(4): 436-449. doi: 10.1006/jvci.2001.0487 CRIMINISI A, PÉREZ P, TOYAMA K. Region filling and object removal by exemplar-based image inpainting[J]. IEEE Transactions on Image Processing, 2004, 13(9): 1200-1212. doi: 10.1109/TIP.2004.833105