• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

坡形浅埋隧道爆破振动效应及理论模型验证

严健 何川 张景 孙正

严健, 何川, 张景, 孙正. 坡形浅埋隧道爆破振动效应及理论模型验证[J]. 西南交通大学学报, 2019, 54(5): 1038-1046. doi: 10.3969/j.issn.0258-2724.20170839
引用本文: 严健, 何川, 张景, 孙正. 坡形浅埋隧道爆破振动效应及理论模型验证[J]. 西南交通大学学报, 2019, 54(5): 1038-1046. doi: 10.3969/j.issn.0258-2724.20170839
YAN Jian, HE Chuan, ZHANG Jing, SUN Zheng. Verification of Theoretical Model and Vibration Effect Caused by Blasting in Shallow Buried Tunnel on Mountain Slope[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 1038-1046. doi: 10.3969/j.issn.0258-2724.20170839
Citation: YAN Jian, HE Chuan, ZHANG Jing, SUN Zheng. Verification of Theoretical Model and Vibration Effect Caused by Blasting in Shallow Buried Tunnel on Mountain Slope[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 1038-1046. doi: 10.3969/j.issn.0258-2724.20170839

坡形浅埋隧道爆破振动效应及理论模型验证

doi: 10.3969/j.issn.0258-2724.20170839
基金项目: 国家重点研发计划项目(2016YFC0802201,2016YFC0802210-1-1);中国铁路总公司科技研究开发计划项目(2017G006-B);高铁联合基金资助项目(U1734205);国家自然科学基金资助项目(51578456)
详细信息
    作者简介:

    严健(1979—),男,讲师,博士,研究方向为高海拔隧道及地下工程,E-mail:sharefuture33@163.com

  • 中图分类号: V221.3

Verification of Theoretical Model and Vibration Effect Caused by Blasting in Shallow Buried Tunnel on Mountain Slope

  • 摘要: 为研究位于边坡地形和浅埋土岩复合地层条件下的山岭隧道施工爆破振动效应和振动影响范围,验证并获得准确适用的振速理论模型,以国道317线下穿县城密集区的德格隧道为依托,利用现场爆破振动监测和回归分析对4组常用理论模型进行验证,同时,通过三维数值模拟及与理论模型计算、现场实测结果的比较,围绕爆破振速、振动影响范围以及存在的爆破振动效应进行分析. 研究结果表明:4组常见理论模型计算拟合度在0.15~0.86之间,其中,唐海、朱传统和周同龄理论模型公式对应不同爆心水平距离、高程差时各有优势;理论模型计算得到的爆破振动影响范围比数值计算结果更接近现场实测结果;在隧道成洞区28 m范围内爆破施工引起的“空洞效应”明显,地表垂向最大振速由起爆点处的1.98 cm/s增大到了2.23 cm/s;爆心所在横切面内顺坡向一侧距离开挖中线10~20 m范围坡面上“边坡效应”显著,最大垂向振速达1.83 cm/s之后随爆心距增大而线性减小;在逆坡向一侧5~10 m范围内随高程增加将出现“高程放大效应”,因此,上述范围内的地表建筑应作为现场监测重点并做好防震措施.

     

  • 图 1  德格隧道平面

    Figure 1.  Plan of the Dege tunnel

    图 2  爆破振动监测试验点

    Figure 2.  Schematic diagram of the plane layout of monitoring points for the blasting vibration

    图 3  现场试验设备

    Figure 3.  Field test equipment

    图 4  计算模型(单位:m)

    Figure 4.  Calculation model (unit: m)

    图 5  开挖及监测点(单位:m)

    Figure 5.  Schematic diagram of the excavationand monitoring (unit: m)

    图 6  开挖加载示意

    Figure 6.  Diagram of loads in excavation

    图 7  地表测点及测线

    Figure 7.  Monitoring points and the line on surface

    图 8  监测点振速波形

    Figure 8.  Oscillogramof vibration velocity

    图 9  测线振速-距离曲线

    Figure 9.  Velocity curves-distance of survey line

    表  1  现场监测结果

    Table  1.   Results of monitoring in conducted experiment

    最大段
    装药量/kg
    监测点
    编号
    直线距离
    $R$/m
    水平距离
    $S$/m
    高程差
    $H$/m
    实测垂向
    速度${V_{y{\rm{1}}}}$/(cm•s–1
    实测水平
    速度${V_{x1}}$/(cm•s–1
    ${V_0}$/(cm•s–1
    1.5监1625.112.4251.4620.8250.740
    监1441.7330290.4740.3520.309
    监 249.374960.3310.2820.231
    监1543.8339200.4750.2200.284
    1.5监 166.2264170.2990.1220.140
    监1183.018310.1620.0250.095
    监 270.6663320.2630.1420.125
    2.0监1467.1965170.2480.1230.136
    监1539.4534200.2220.1750.340
    监1549.2445200.4910.3500.340
    监1462.3660170.1000.0800.155
    监 162.3958230.1830.2400.155
    下载: 导出CSV

    表  2  拟合结果及试验点振速计算

    Table  2.   Fitting results and vibration velocity calculation of test points

    名称回归方程拟合度试验点1试验点2试验点3
    Vy2Vy1Vy2Vy1Vy2Vy1
    周同龄${{V_y} = 150{\left( {\displaystyle\frac{{{Q^{1/3}}}}{R}} \right)^{{\rm{1}}{\rm{.72}}}}{H^{0.275}}}$0.620.1410.1632.9001.4621.7851.475
    唐海${{V_y} = 150 \times 1.45 \times {\left( {\displaystyle\frac{{{Q^{1/3}}}}{R}} \right)^{1.72}}{\left( {\displaystyle\frac{H}{R}} \right)^{0.80}}}$0.860.0080.1631.5031.4621.0621.475
    朱传统${{V_y} = 150{\left( {\displaystyle\frac{{{Q^{1/3}}}}{R}} \right)^{1.72}}{\left( {\displaystyle\frac{{{Q^{1/3}}}}{H}} \right)^{{\rm{ - 0}}{\rm{.12}}}}}$0.750.1300.1631.9971.4621.0661.475
    水工技规${{V_y} = 150{\left( {\displaystyle\frac{{{Q^{1/3}}}}{S}} \right)^{1.72}}{\left( {\displaystyle\frac{{{Q^{1/3}}}}{H}} \right)^{{\rm{ - }}0.18}}}$0.150.1330.1633.3921.46249.8171.475
    下载: 导出CSV

    表  3  模型物理力学计算参数

    Table  3.   Physical and mechanical calculation parameters of the model

    名称Ed/GPa泊松比粘聚力/kPa内摩擦角/(°)密度/(kg•m–3
    坡洪积松散堆积体(V)0.400.4520281 950
    裂隙发育灰岩、片岩(Ⅳ)15.000.2880382 500
    混凝土35.000.202 500
    下载: 导出CSV

    表  4  最大振速比较

    Table  4.   Comparison of the maximum vibration

    试验点编号式(2)式(3)式(4)数值计算结果实测结果
    10.1410.0080.1300.1550.163
    22.9001.5031.9971.7501.462
    31.7851.0621.0661.8801.475
    下载: 导出CSV
  • 李铮,汪波,何川,等. 城市浅埋隧道穿越饱和砂土复合地层时适宜的施工法[J]. 中国铁道科学,2015,36(1): 75-82. doi: 10.3969/j.issn.1001-4632.2015.01.11

    LI Zheng, WANG Bo, HE Chuan, et al. Suitable constitution method for urban shallow tunnel crossing through complex stratum in satcnated sandy soil[J]. China Railway Science, 2015, 36(1): 75-82. doi: 10.3969/j.issn.1001-4632.2015.01.11
    HE Chuan, WANG Bo. Research progress and development trends of highway tunnels in China[J]. Journal of Modern Transportation, 2013, 21(4): 209-223. doi: 10.1007/s40534-013-0029-4
    NAKANO K I, OKADA S, FURUKAWA K, et al. Vibration and cracking of tunnel lining due to adjacent blasting[J]. Doboku Gakkai Rombun-Hokokushu/Proceedings of the Japan Society of Civil Engineers, 1993, 462(6): 53-62.
    李铮,汪波,骆耀文. 城市隧道下穿密集建筑区静、动力响应特征分析[J]. 铁道科学与工程学报,2015,12(2): 384-392. doi: 10.3969/j.issn.1672-7029.2015.02.025

    LI Zheng, WANG Bo, LUO Yaowen. Analysis of static and dynamic response characteristics of urban tunnels passing underneath dense-constructed areas[J]. Journal of Railway Science and Engineering, 2015, 12(2): 384-392. doi: 10.3969/j.issn.1672-7029.2015.02.025
    阳军生,杨元洪,晏莉,等. 大断面隧道下穿既有高压输电铁塔施工方案比选及其应用[J]. 岩石力学与工程学报,2012,31(6): 1184-1191. doi: 10.3969/j.issn.1000-6915.2012.06.013

    YANG Junsheng, YANG Yuanhong, YAN li, et al. Construction scheme choice of large span tunnels under-passing high voltage transmission tower and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6): 1184-1191. doi: 10.3969/j.issn.1000-6915.2012.06.013
    汪波,何川,夏炜洋. 爆破施工新建地铁隧道与既有运营地铁的相互动力响应研究[J]. 中国铁道科学,2011,32(5): 64-70.

    WANG Bo, HE Chuan, XIA Weiyang. Study on the dynamic esponses between the New-Built subway tunnel y blasting construction and the existing operation subway unnel[J]. China Railway Science, 2011, 32(5): 64-70.
    赵东平. 小净距平行隧道下穿施工对多层建筑的影响研究[J]. 现代隧道技术,2011,48(5): 30-38. doi: 10.3969/j.issn.1009-6582.2011.05.006

    ZHAO Dongping. The effects of parallel tunnel construction with a small clear distance on a multistory building[J]. Modern Tunnelling Technology, 2011, 48(5): 30-38. doi: 10.3969/j.issn.1009-6582.2011.05.006
    LIAO Tao, PU ChuanJin, YANG Xin, et al. Special effects of vibration caused by pile-well blasting in adjacent slope[J]. Rock and Soil Mechanics, 2015, 36(10): 623-628.
    唐海. 地形地貌对爆破振动波影响的试验和理论研究[D]. 武汉: 中国科学院研究生院(武汉岩土力学研究所), 2007
    中国工程爆破协会. 爆破安全规程: GB6722—2014[S].北京: 中国标准出版社, 2015
    萨道夫斯基. 地震预报[M]. 北京: 地震出版社, 1986: 45-58
    周同龄,李玉寿. 反映高程的爆破震动公式及其应用[J]. 江苏煤炭,1997(4): 21-22.

    ZHOU Tongling, LI Yushou. Application of blasting vibration formula related to highness[J]. Jiangsu Coal, 1997(4): 21-22.
    唐海,李海波. 反映高程放大效应的爆破振动公式研究[J]. 岩土力学,2011,32(3): 820-824. doi: 10.3969/j.issn.1000-7598.2011.03.030

    TANG Hai, LI Haibo. Study of blasting vibration formula of reflecting amplification effect on elevation[J]. Rock and Soil Mechanics, 2011, 32(3): 820-824. doi: 10.3969/j.issn.1000-7598.2011.03.030
    朱传统,刘宏根. 地震波参数沿边坡坡面传播规律公式选择[J]. 爆破,1988(2): 30-34.

    ZHU Chuantong, LIU Honggen. Selection of formula on propagation of the parameters of explosive seismic wave along slope[J]. Blasting, 1988(2): 30-34.
    长江水利委员会长江科学院等. 水工建筑物岩石基础开挖工程施工技术规范: T5389—2007[S]. 北京: 中国电力出版社, 2007
    沈明荣. 岩体力学[M]. 上海: 同济大学出版社, 1999: 45-48
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  461
  • HTML全文浏览量:  216
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-24
  • 修回日期:  2018-01-14
  • 网络出版日期:  2018-03-27
  • 刊出日期:  2019-10-01

目录

    /

    返回文章
    返回