• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

Ca含量对AMCa镁合金超高周疲劳断裂行为的影响

张艳斌 孙东洋 张继旺

张艳斌, 孙东洋, 张继旺. Ca含量对AMCa镁合金超高周疲劳断裂行为的影响[J]. 西南交通大学学报, 2019, 54(2): 381-387. doi: 10.3969/j.issn.0258-2724.20170831
引用本文: 张艳斌, 孙东洋, 张继旺. Ca含量对AMCa镁合金超高周疲劳断裂行为的影响[J]. 西南交通大学学报, 2019, 54(2): 381-387. doi: 10.3969/j.issn.0258-2724.20170831
ZHANG Yanbin, SUN Dongyang, ZHANG Jiwang. Influence of Ca Content on Ultra-High Cycle Fatigue Fracture Behavior of AMCa Magnesium Alloy[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 381-387. doi: 10.3969/j.issn.0258-2724.20170831
Citation: ZHANG Yanbin, SUN Dongyang, ZHANG Jiwang. Influence of Ca Content on Ultra-High Cycle Fatigue Fracture Behavior of AMCa Magnesium Alloy[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 381-387. doi: 10.3969/j.issn.0258-2724.20170831

Ca含量对AMCa镁合金超高周疲劳断裂行为的影响

doi: 10.3969/j.issn.0258-2724.20170831
基金项目: 中央高校基本科研业务费专项资金资助项目(2682017CX039)
详细信息
    作者简介:

    张艳斌(1983—),男,讲师,博士,研究方向为材料疲劳与断裂,E-mail:zyb628@swjtu.edu.cn

  • 中图分类号: TG111.8;TG115.5

Influence of Ca Content on Ultra-High Cycle Fatigue Fracture Behavior of AMCa Magnesium Alloy

  • 摘要: 为了阐明Ca含量对镁合金疲劳性能的影响,采用旋转弯曲疲劳试验机对两种AMCa镁合金进行超高周疲劳实验,并利用扫描电子显微镜SEM (scanning electron microscope)和X射线能谱仪EDS (X-ray energy dispersive spectroscopy)观察疲劳试样的断口形貌,分析了两种镁合金疲劳S-N(疲劳应力-疲劳寿命)曲线特性和疲劳断裂行为,讨论了Ca元素含量增加对镁合金疲劳寿命和疲劳裂纹萌生机制的影响. 结果表明,AM1.77 Ca镁合金S-N曲线没有传统的疲劳极限,呈现曲线连续下降趋势;AM1.85 Ca镁合金具有双S-N曲线特性,在130 MPa左右出现转折点;Ca元素含量增加导致镁合金产生微观结构缺陷,使材料的疲劳裂纹萌生模式从AM1.77 Ca镁合金的表面萌生模式转变为AM1.85 Ca镁合金的两种疲劳裂纹萌生模式,即表面萌生和次表面萌生模式,这种转变对材料抗疲劳性能的提升不利.

     

  • 图 1  疲劳试样的形状和尺寸示意

    Figure 1.  Schematic of shape and dimensions of fatigue specimen

    图 2  疲劳试样的S-N曲线

    Figure 2.  S-N curves of fatigue specimens

    图 3  AM1.77 Ca镁合金的疲劳断口形貌(σa = 230 MPa)

    Figure 3.  Fatigue fracture morphologies of AM1.77 Ca magnesium alloy (σa = 230 MPa)

    图 4  AM1.77 Ca镁合金的疲劳断口形貌(σa = 110 MPa)

    Figure 4.  Fatigue fracture morphologies of AM1.77 Ca magnesium alloy (σa = 110 MPa)

    图 5  AM1.85 Ca镁合金的疲劳断口形貌(σa=180 MPa)

    Figure 5.  Fatigue fracture morphologies of AM1.85 Ca magnesium alloy (σa=180 MPa)

    图 6  AM1.85 Ca镁合金的疲劳断口形貌(σa=110 MPa)

    Figure 6.  Fatigue fracture morphologies of AM1.85 Ca magnesium alloy (σa=110 MPa)

    图 7  疲劳裂纹萌生区EDS分析(σa=120 MPa)

    Figure 7.  EDS analysis of fatigue crack initiation site (σa=120 MPa)

    图 8  疲劳裂纹萌生区EDS分析(σa=130 MPa)

    Figure 8.  EDS analysis of fatigue crack initiation site (σa=130 MPa)

    表  1  实验材料的化学成分

    Table  1.   Chemical composition of experimental material

    材料AlZnMnSiCuFeNiCaMg
    AM1.77 Ca6.7900.0030.250.040.0020.006<0.0011.770余量
    AM1.85 Ca5.9500.0210.210.020.0010.001<0.0011.850余量
    下载: 导出CSV

    表  2  实验材料的力学性能参数

    Table  2.   Mechanical properties of experimental material

    材料抗拉强度/MPa屈服强度/MPa伸长率/%硬度/HV
    AM1.77 Ca2992151260.5
    AM1.85 Ca3082501075.2
    下载: 导出CSV
  • PLATUS D L, KOJIMA Y. Platform science and technology for advanced magnesium alloy[J]. Materials Science Forum, 2000, 350-351(7): 3-20.
    FRIEDRICH H, SCHUMANN S. Research for a new age of magnesium in the automotive industry[J]. Journal of Materials Processing Technology, 2001, 117(3): 276-281. doi: 10.1016/S0924-0136(01)00780-4
    唐靖林,曾大本. 镁合金的应用发展现状[J]. 机械工人:热加工,2002(9): 32-35.

    TANG Jinglin, ZENG Daben. The applications and development of magnesium alloys[J]. Machinist Metal Forming, 2002(9): 32-35.
    王渠东,丁文江. 镁合金研究开发现状与展望[J]. 世界有色金属,2004(7): 8-11.

    WANG Qudong, DING Wenjiang. The development situation and prospect of magnesium alloys[J]. World Nonferrous Metals, 2004(7): 8-11.
    翟春泉,曾小勤,丁文江,等. 镁合金的开发与应用[J]. 机械工程材料,2001,25(1): 6-10. doi: 10.3969/j.issn.1000-3738.2001.01.004

    ZHAI Chunquan, ZENG Xiaoqin, DING Wenjiang, et al. Development and application of magnesium alloys in China[J]. Materials for Mechanical Engineering, 2001, 25(1): 6-10. doi: 10.3969/j.issn.1000-3738.2001.01.004
    KONDORI B, MAHMUDI R. Effect of Ca additions on the microstructure,thermal stability and mechanical properties of a cast AM60 magnesium alloy[J]. Materials Science and Engineering A, 2010, 527(7): 2014-2021.
    樊昱,吴国华,高洪涛,等. Ca对镁合金组织、力学性能和腐蚀性能的影响[J]. 中国有色金属学报,2005,15(2): 210-216. doi: 10.3321/j.issn:1004-0609.2005.02.007

    FAN Yu, WU Guohua, GAO Hongtao, et al. Effect of Ca on microstructure,mechanical properties and corrosion resistance of magnesium alloy[J]. The Chinese Journal of Nonferrous Metals, 2005, 15(2): 210-216. doi: 10.3321/j.issn:1004-0609.2005.02.007
    WANG Q D, CHEN W Z, ZENG X Q, et al. Effects of Ca addition on the microstructure and mechanical properties of AZ91magnesium alloy[J]. Journal of Materials Science, 2001, 36(12): 3035-3040. doi: 10.1023/A:1017927109291
    LI P J, TANG B, KANDALOVA E G. Microstructure and properties of AZ91D alloy with Ca additions[J]. Materials Letters, 2005, 59(6): 671-675. doi: 10.1016/j.matlet.2004.11.006
    MASAKI K, OCHI Y, KAKIUCHI T, et al. High cycle fatigue property of extruded non-combustible Mg alloy AM602[J]. Materials Transactions, 2008, 49(5): 1148-1156. doi: 10.2320/matertrans.MC2007108
    PETERSON R E. Stress concentration design factors[M]. [S.l.]: Wiley, 1953: 28
    张艳斌,鲁连涛,薛弼一. 喷丸处理对6151-T6铝合金旋转弯曲疲劳性能的影响[J]. 材料工程,2014(4): 73-78. doi: 10.11868/j.issn.1001-4381.2014.11.013

    ZHANG Yanbin, LU Liantao, XUE Biyi. Effect of shot-peening on fatigue behavior of 6151-T6 aluminum alloy under rotating bending[J]. Journal of Materials Engineering, 2014(4): 73-78. doi: 10.11868/j.issn.1001-4381.2014.11.013
    YANG F, YIN S M, LI S X, et al. Crack initiation mechanism of extruded AZ31 magnesium alloy in the very high cycle fatigue regime[J]. Materials Science and Engineering A, 2008, 491(1/2): 131-136.
    鲁连涛,李伟,张继旺,等. GCr15钢旋转弯曲超长寿命疲劳性能分析[J]. 金属学报,2009,45(1): 73-78. doi: 10.3321/j.issn:0412-1961.2009.01.012

    LU Liantao, LI Wei, ZHANG Jiwang, et al. Analysis of rotary bending gigacycle fatigue properties of bearing steel GGr15[J]. Acta Metallurgica Sinica, 2009, 45(1): 73-78. doi: 10.3321/j.issn:0412-1961.2009.01.012
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  364
  • HTML全文浏览量:  193
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-12
  • 修回日期:  2018-04-15
  • 网络出版日期:  2018-12-27
  • 刊出日期:  2019-04-01

目录

    /

    返回文章
    返回