Field Tests on Lateral Operational Characteristics of Passenger Cars on Helical Ramps (Bridges)
-
摘要: 螺旋匝道和螺旋桥的数量近年来与日俱增,但其驾驶行为模式和汽车运行特征一直未得到明确,为此,在涪陵长江一桥、乌江二桥、重庆融侨大道和涪陵金凯装饰城环形高架4处地点开展了螺旋匝道实车驾驶实验,采集了自然驾驶状态下的汽车连续行驶轨迹、横向加速度以及周围行驶环境等信息. 基于自然驾驶数据,得到了螺旋匝道范围内汽车横向加速度的变化模式、幅值特性、影响因素,以及驾驶人的车道使用特性. 研究结果表明:汽车横向加速度幅值在螺旋匝道范围内的变化趋势有多种模式,包括保持恒定、单调上升、单调下降、鼓型等;内圈匝道的横向加速度高于外圈;在单向行驶匝道上,横向加速度实测值远高于规范中的推荐值甚至超出可忍受范围,导致一部分被试行驶时横向舒适性较差;匝道半径和行驶空间对横向加速度幅值有显著影响,行驶空间保持一定时,横向加速度与匝道半径成负相关关系;单幅混合双向行驶的螺旋匝道,横向加速度幅值最低;对于单向双车道螺旋匝道,不管是上行方向还是下行方向,使用内侧车道是占主要比例的驾驶行为.Abstract: Helical ramps and helical bridges are widely used in recent years, however the driving patterns and dynamic characteristics of vehicles running on them are still unclear. Therefore, to obtain the driving pattern of passenger cars on helical ramps (bridge), driving tests using real cars were carried out on Fuling Yangtze River Bridge, Second Fuling Wujiang River Bridge, Rongqiao Helical Bridge and Jinkai Helical Bridge in Chongqing. Trajectory and lateral acceleration speed of cars under drivers’ naturalistic driving were continuously collected, as well as environment information. Based on naturalistic driving data, the variation, amplitude and influencing factors of speed and lateral acceleration were obtained, together with lane usage pattern. It was found that diversified lateral acceleration patterns on helical ramps were observed, such as stabilized, increasing, deceasing, and drum-typed. Larger lateral acceleration were recorded on ramps along the inner ring than on ramps along the outer ring. Lateral acceleration measured on some one-way ramps are significantly higher than the recommended valve in highway design guidelines and even exceeding the unbearable threshold, which cause passengers discomfort in side direction. Ramp radius and driving space greatly affect lateral acceleration, lateral acceleration drops as ramp radius increases if driving space holds constant, and the smallest lateral acceleration was measured on mixed two-way helical ramp. For one-way helical ramps with two lanes, regardless of on upward ramp or downward ramp, driving on inside lane accounted for a major proportion of driving patterns.
-
Key words:
- interchange /
- helical ramp /
- helical curves /
- lateral acceleration /
- lane occupation /
- driving behavior /
- road safety
-
表 1 试验对象的主要技术参数
Table 1. Main technical parameters of test roads
试验
对象设计速度/
(km•h−1)横断面
形式每幅车道
数/道结构形式 纵坡
坡度/%平曲线半径/m 超高率/% 匝道层
数/层限速值/
(km•h−1)被试编号 YZB 20 双幅分向
行驶1 独柱墩
形式4.5 上行匝道 39.53,
下行匝道 50.006 2 20 D6~D15 WJSB 30 双幅分向
行驶2 单墩悬挑横
梁式连续梁4.5 上行匝道 51.00,
下行匝道 38.254 2 30 D6~D13 RQB 40 双幅分向
行驶2 门型墩多跨
连续梁6.0 中间带半径 55.00 2 2 40 D1~D4;D10~D15 JKRB 20 单幅双向
混合行驶2 门型墩多跨
连续梁5.0~6.0 30.00 0 2 20 D8~D16 表 2 螺旋匝道横向加速度统计值以及特征分位值
Table 2. Statistics and characteristic percentiles of lateral acceleration on helical ramps
m/s2 参数
类别最大
值均值 百分位值/% 15 25 50 75 85 90 95 a 均值 3.92 2.21 1.47 1.68 2.28 2.73 2.89 3.01 3.18 a 峰值 4.40 2.70 1.91 2.15 2.77 3.21 3.43 3.55 3.69 表 3 位于不同舒适度区间的
$a $ 数据点比例Table 3. Data ratio of lateral acceleration in different comfortable range
% 数据类别 舒适 比较舒适 不舒适 不可忍受 a 均值 24.0 58.3 17.7 0 a 峰值 6.5 48.0 44.5 1.0 表 4 WJSB螺旋匝道车道使用情况统计
Table 4. Lane occupation on Second Fuling Wujiang River Bridge
次 匝道坡向 驾驶人 合计 D6 D7 D8 D9 D10 D11 D12 内侧 外侧 内侧 外侧 内侧 外侧 内侧 外侧 内侧 外侧 内侧 外侧 内侧 外侧 内侧 外侧 上行匝道 4 0 4 0 0 6 1.5 3.5 1 4 3 0 3 0 16.5 13.5 下行匝道 4 0 4 0 6 0 5 0 0 5 0 3 1 2 20 10 表 5 RQB桥车道使用情况统计
Table 5. Lane occupation on Rongqiao Helical Bridge
次 匝道坡向 驾驶人 合计 D1 D2 D3 D4 D10 D11 内侧 外侧 内侧 外侧 内侧 外侧 内侧 外侧 内侧 外侧 内侧 外侧 内侧 外侧 上行方向 3.5 0.5 4 0 4 0 1 2 5 0 4.5 0.5 22 3 下行方向 4 0 4 0 4 0 3 0 4 1 3 2 22 3 -
赖亚平,杨春,任国雷. 涪陵乌江二桥螺旋匝道设计[J]. 桥梁建设,2007(1): 47-50. doi: 10.3969/j.issn.1003-4722.2007.01.012LAI Yaping, YANG Chun, REN Guolei. Design of spiral ramp bridge of the Second Fuling Wujiang River Bridge[J]. Bridge Construction, 2007(1): 47-50. doi: 10.3969/j.issn.1003-4722.2007.01.012 杨春,赖亚平,任国雷. 一种立交螺旋匝道的新型结构设计[J]. 公路,2008(10): 18-22.YANG Chun, LAI Yaping, REN Guolei. A new structure design of helical ramps[J]. Highway, 2008(10): 18-22. 李思东,赵智慧,刘明志. 涪陵长江一桥南桥头螺旋匝道结构设计和计算分析[J]. 中国新技术新产品,2016(10): 104-105.LI Sidong, ZHAO Zhihui, LIU Mingzhi. Structure design and calculation of helical ramp of Fuling Yangtze River Bridge[J]. New Technology & New Products of China, 2016(10): 104-105. 王伟. 重庆融侨大道双层螺旋桥模板支撑体系的地基处理[J]. 建筑施工,2010,32(8): 864-865, 871. doi: 10.3969/j.issn.1004-1001.2010.08.050WANG Wei. Foundation treatment for double-deck spiral bridge on Chongqing Rongqiao Avenue[J]. Building Construction, 2010, 32(8): 864-865, 871. doi: 10.3969/j.issn.1004-1001.2010.08.050 张智勇,郝晓,吴文斌,等. 互通立交匝道运行速度预测模型[J]. 交通运输系统工程与信息,2015,15(1): 93-99. doi: 10.3969/j.issn.1009-6744.2015.01.017ZHANG Zhiyong, HAO Xiaoyun, WU Wenbin, et al. The running speed prediction model of interchange ramp[J]. Journal of Transportation Systems Engineering and Information Technology, 2015, 15(1): 93-99. doi: 10.3969/j.issn.1009-6744.2015.01.017 张驰,闫晓,李小伟,等. 互通式立交单车道出口小客车运行速度模型[J]. 中国公路学报,2017,30(6): 279-286. doi: 10.3969/j.issn.1001-7372.2017.06.011ZHANG Chi, YAN Xiao, LI Xiaowei, et al. Operating speed model of passenger car at single-lane exit of interchange[J]. China Journal of Highway Transportation, 2017, 30(6): 279-286. doi: 10.3969/j.issn.1001-7372.2017.06.011 王海君,杨少伟. 高速公路互通式立交单车道减速车道长度研究[J]. 公路交通科技,2015,32(3): 124-128. doi: 10.3969/j.issn.1002-0268.2015.03.020WANG Haijun, YANG Shaowei. Research of length of deceleration lane at expressway interchange[J]. Journal of Highway and Transportation Research and Development, 2015, 32(3): 124-128. doi: 10.3969/j.issn.1002-0268.2015.03.020 方守恩,揭磊,刘硕,等. 地下道路匝道入口段车辆运行特征[J]. 系统仿真技术,2017,13(2): 83-89. doi: 10.3969/j.issn.1673-1964.2017.02.002FANG Shouen, JIE Lei, LIU Shuo, et al. Vehicle operation characteristics of ramp entrance in underground road[J]. System Simulation Technology, 2017, 13(2): 83-89. doi: 10.3969/j.issn.1673-1964.2017.02.002 胡江碧, 朱强斌. 高速公路立交区驾驶员行为特性分析[C]// 第七届中国智能交通年会优秀论文集——智能交通技术. 第七届中国智能交通年会学术委员会, 北京: [出版者不详], 2012: 16-23. POLUS A, LIVNEH M, FACTOR J. Vehicle flow characteristics on acceleration lanes[J]. Journal of Transportation Engineering, 1985, 111(6): 595-606. doi: 10.1061/(ASCE)0733-947X(1985)111:6(595) LIVNEH M, POLUS A.FACTOR J. Vehicle behavior on deceleration lanes[J]. Journal of Transportation Engineering, 1988, 114(6): 706-717. doi: 10.1061/(ASCE)0733-947X(1988)114:6(706) AHAMMED M A, HASSAN Y, SAYED T A. Modeling driver behavior and safety on freeway merging areas[J]. Journal of Transportation Engineering, 2008, 134(9): 370-377. doi: 10.1061/(ASCE)0733-947X(2008)134:9(370) FITZPATRICK K, CHRYSLER S T, BREWER M. Deceleration lengths for exit terminals[J]. Journal of Transportation Engineering, 2012, 138(6): 768-775. doi: 10.1061/(ASCE)TE.1943-5436.0000380 ZIRKEL B, PARK S, MCFADDEN J, et al. Analysis of sight distance, crash rate, and operating speed relationships for low-volume single-lane roundabouts in the United States[J]. Journal of Transportation Engineering, 2013, 139(6): 566-573. PERCO P, MARCHIONNA A, FALCONETTI N. Prediction of the operating speed profile approaching and departing intersections[J]. Journal of Transportation Engineering, 2012, 138(12): 1476-1483. doi: 10.1061/(ASCE)TE.1943-5436.0000471 XU J, YANG K, SHAO Y M. Ride comfort of passenger cars on two-lane mountain highways based on tri-axial acceleration from field driving tests[J]. International Journal of Civil Engineering, Transaction A: Civil Engineering, 2018, 16(3): 335-351. 徐进,杨奎,鲁工圆,等. 基于自然驾驶的山区公路行驶舒适性研究[J]. 西南交通大学学报,2017,52(2): 309-318. doi: 10.3969/j.issn.0258-2724.2017.02.014XU Jin, YANG Kui, LU Gongyuan, et al. Investigation on driving comfort of passenger cars on mountain roads based on naturalistic driving[J]. Journal of Southwest Jiaotong University, 2017, 52(2): 309-318. doi: 10.3969/j.issn.0258-2724.2017.02.014 交通运输部公路局. 公路工程技术标准: JTG B01—2014 [S]. 北京: 人民交通出版社, 2015. 徐进,杨奎,罗庆,等. 公路客车横向加速度实验研究[J]. 西南交通大学学报,2014,49(3): 536-545. doi: 10.3969/j.issn.0258-2724.2014.03.026XU Jin, YANG Kui, LUO Qing, et al. Field measurement of automobiles lateral accelerations[J]. Journal of Southwest Jiaotong University, 2014, 49(3): 536-545. doi: 10.3969/j.issn.0258-2724.2014.03.026