• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

拉索式电涡流阻尼器力学模型及性能试验研究

薛松涛 班鑫磊 谢丽宇 余必龙

薛松涛, 班鑫磊, 谢丽宇, 余必龙. 拉索式电涡流阻尼器力学模型及性能试验研究[J]. 西南交通大学学报, 2020, 55(2): 317-322. doi: 10.3969/j.issn.0258-2724.20170802
引用本文: 薛松涛, 班鑫磊, 谢丽宇, 余必龙. 拉索式电涡流阻尼器力学模型及性能试验研究[J]. 西南交通大学学报, 2020, 55(2): 317-322. doi: 10.3969/j.issn.0258-2724.20170802
XUE Songtao, BAN Xinlei, XIE Liyu, YU Bilong. Theoretical Model and Performance Tests of Rotational Eddy Current Dampers with Cable[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 317-322. doi: 10.3969/j.issn.0258-2724.20170802
Citation: XUE Songtao, BAN Xinlei, XIE Liyu, YU Bilong. Theoretical Model and Performance Tests of Rotational Eddy Current Dampers with Cable[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 317-322. doi: 10.3969/j.issn.0258-2724.20170802

拉索式电涡流阻尼器力学模型及性能试验研究

doi: 10.3969/j.issn.0258-2724.20170802
基金项目: 国家自然科学基金(51478356,51778490);政府间国际科技创新合作重点专项(2016YFE0127600)
详细信息
    作者简介:

    薛松涛(1963—),男,教授,博士生导师,研究方向为结构抗震与振动控制,E-mail:xue@tongji.edu.cn

  • 中图分类号: TU352.1

Theoretical Model and Performance Tests of Rotational Eddy Current Dampers with Cable

  • 摘要: 提出一种新型的拉索式旋转电涡流减震系统,该系统由惯容器、弹簧和阻尼单元组成. 为验证该减震系统的减震机理,建立了装配阻尼器的单层框架力学模型,分别进行了单层框架、导体盘为5 mm铜板、10 mm铜板、5 mm铁板、5 mm铜板与5 mm铁板复合时的惯容器和不同材质的导体盘在10、20、30、40 mm气隙下带电涡流阻尼器的振动测试,以分析导体盘与永磁体间的气隙大小、导体盘材质和导体盘厚度对阻尼器附加阻尼比的影响. 试验结果表明:在铜板后附加铁板,阻尼增加至铜板的1.9倍、铁板的1.4倍,可最大化增加阻尼;气隙是影响电涡流阻尼的关键因素,当气隙增大时,阻尼比会迅速减小,调节气隙大小是改变结构附加阻尼比最有效和最容易的方法;阻尼器提供的阻尼比最大可达15.40%,证实了该阻尼器具有较强的耗能能力.

     

  • 图 1  电涡流阻尼原理

    Figure 1.  Sketch of eddy current damping

    图 2  拉索式旋转电涡流阻尼器的基本构造

    Figure 2.  Basic structure of rotational eddy current damper with cable bracing

    图 3  拉索变形与层间位移关系

    Figure 3.  Relation between cable deformation and story drift

    图 4  电涡流阻尼器装置

    Figure 4.  Photo of eddy current damper

    图 5  试验装置

    Figure 5.  Schematic diagram of experimental devices

    图 6  框架自由振动位移响应曲线

    Figure 6.  Displacement response curve of frame in free vibration

    图 7  体系的位移响应

    Figure 7.  Displacement response of single degree-of-freedom system

    图 8  阻尼比测试值

    Figure 8.  Test values of damping ratio

    图 9  不同气隙下框架自由振动的时程曲线

    Figure 9.  Time-history curves of eddy current dampers in free vibration

    表  1  框架及拉索式旋转电涡流阻尼器的结构参数

    Table  1.   Parameters of test frame and rotational eddy current dampers

    部件参数说明
    框架楼板长 834 mm,宽 390 mm,厚 10 mm,Q235
    框架柱截面 5 mm × 60 mm,高 1 000 mm,Q235
    永磁体厚度 20 mm,直径 25 mm,剩磁 Br = 1.2 T
    磁极数单侧 12个
    导体板厚度 5、10 mm,直径 190 mm
    固定侧板240 mm × 200 mm × 12 mm
    气隙10、20、30、40 mm
    钢绞线直径 2 mm,最大承重 294 kg
    下载: 导出CSV

    表  2  工况参数表

    Table  2.   Condition parameters

    编号工况名编号工况名
    1 Cu5-g-20 12 Fe5-d-10
    2 Fe5-g-20 13 Cu10-d-40
    3 Cu10-g-20 14 Cu10-d-30
    4 Cu5Fe5-g-20 15 Cu10-d-20
    5 Cu5-d-40 16 Cu10-d-10
    6 Cu5-d-30 17 Cu5Fe5-d-40
    7 Cu5-d-20 18 Cu5Fe5-d-30
    8 Cu5-d-10 19 Cu5Fe5-d-20
    9 Fe5-d-40 20 Cu5Fe5-d-10
    10 Fe5-d-30 21 单层框架
    11 Fe5-d-20
    下载: 导出CSV

    表  3  自由振动测试结果

    Table  3.   Test results in free vibration

    工况固有圆频率
    /(rad·s−1
    阻尼比
    /%
    电涡流效应
    提供的阻尼比/%
    纯框架 5.882 0.509
    Cu5-g-20 4.720 4.950
    Cu5-d-20 4.900 10.400 5.450
    Fe5-g-20 4.640 4.630
    Fe5-d-20 4.910 12.300 7.670
    Cu10-g-20 3.900 4.790
    Cu10-d-20 4.510 13.400 8.610
    Cu5Fe5-g-20 4.150 4.860
    Cu5Fe5-d-20 4.240 15.400 10.540
     注:—表示无电涡流阻尼效应.
    下载: 导出CSV
  • 梅真,郭子雄,侯炜,等. 随机地震动下粘滞阻尼减震结构振动台试验研究[J]. 西南交通大学学报,2018,53(5): 989-999. doi: 10.3969/j.issn.0258-2724.2018.05.016

    MEI Zhen, GUO Zixiong, HOU Wei, et al. Shaking table test of model structure with viscous dampers subjected to random earthquake ground motions[J]. Journal of Southwest Jiaotong University, 2018, 53(5): 989-999. doi: 10.3969/j.issn.0258-2724.2018.05.016
    JSSI. Report of response-controlled buildings[R]. Tokyo: Japan Society of Seismic Isolation (JSSI) Investigation Committee, 2012.
    CAO M, TANG H, FUNAKI N, et al. Study on a real 8F steel building with oil damper damaged during the 2011 Great East Japan Earthquake[C]//15th World Conference on Earthquake Engineering. Lisbon: [s.n.], 2012: 1-10.
    KIENHOLZ D A, PENDLETON S C, RICHARDS K E, et al. Demonstration of solar array vibration suppression[C]//Proceedings of SPIE Conference on Smart Structures and Materials. Orlando: [s.n.], 1994, 2193: 59-73.
    LAROSE G L, LARSEN A, SVENSSON E. Modelling of tuned mass dampers for wind-tunnel tests on a full-bridge aeroelastic model[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 54: 427-437.
    方重,吴和霖,楼梦麟. 电磁涡流耗能调谐质量阻尼器研制与性能试验[J]. 同济大学学报(自然科学版),2001,29(6): 752-756.

    FANG Chong, WU Helin, LOU Menglin. Development of electromagnetism vortex flow energy dissipation TMD devices and test study on its property[J]. Journal of Tongji University (Natural Science), 2001, 29(6): 752-756.
    陈政清,黄智文. 一种板式电涡流阻尼器的有限元模拟及试验分析[J]. 合肥工业大学学报(自然科学版),2016,39(4): 499-502. doi: 10.3969/j.issn.1003-5060.2016.04.014

    CHEN Zhengqing, HUANG Zhiwen. Finite element simulation and experimental test of a plane-type eddy current damper[J]. Journal of Hefei University of Technology (Science and Technology), 2016, 39(4): 499-502. doi: 10.3969/j.issn.1003-5060.2016.04.014
    祝长生. 转子系统径向电涡流阻尼器[J]. 中国机械工程,2007,18(19): 2269-2272. doi: 10.3321/j.issn:1004-132x.2007.19.001

    ZHU Changsheng. A journal eddy current damper for rotor systems[J]. China Mechanical Engineering, 2007, 18(19): 2269-2272. doi: 10.3321/j.issn:1004-132x.2007.19.001
    祝长生. 时变磁场下径向电涡流阻尼器的动力特性[J]. 机械工程学报,2009,45(8): 31-36.

    ZHU Changsheng. Dynamic performance of a radial eddy current damper under variable-time magnetic field[J]. Journal of Mechanical Engineering, 2009, 45(8): 31-36.
    VAR BEEK T A, PLUK K J W, JANSEN J W, et al. Optimization and measurement of eddy current damping applied in a tuned mass damper[C]//2014 International Conference on Electrical Machines (ICEM). [S.l.]: IEEE, 2014: 609-615.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  736
  • HTML全文浏览量:  430
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-17
  • 修回日期:  2018-09-20
  • 网络出版日期:  2018-10-10
  • 刊出日期:  2020-04-01

目录

    /

    返回文章
    返回