• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

多孔介质海床对单桩所受波浪力的影响分析

陈林雅 廖晨聪 段伦良 郑东生

陈林雅, 廖晨聪, 段伦良, 郑东生. 多孔介质海床对单桩所受波浪力的影响分析[J]. 西南交通大学学报, 2019, 54(2): 328-335. doi: 10.3969/j.issn.0258-2724.20170800
引用本文: 陈林雅, 廖晨聪, 段伦良, 郑东生. 多孔介质海床对单桩所受波浪力的影响分析[J]. 西南交通大学学报, 2019, 54(2): 328-335. doi: 10.3969/j.issn.0258-2724.20170800
CHEN Linya, LIAO Chencong, DUAN Lunliang, ZHENG Dongsheng. Influence of Porous Seabed Characteristics on Wave Forces Acting on Monopile[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 328-335. doi: 10.3969/j.issn.0258-2724.20170800
Citation: CHEN Linya, LIAO Chencong, DUAN Lunliang, ZHENG Dongsheng. Influence of Porous Seabed Characteristics on Wave Forces Acting on Monopile[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 328-335. doi: 10.3969/j.issn.0258-2724.20170800

多孔介质海床对单桩所受波浪力的影响分析

doi: 10.3969/j.issn.0258-2724.20170800
基金项目: 国家自然科学基金项目资助项目(41176073);中央高校基本科研业务费专项资金资助项目(2682017QY02)
详细信息
    作者简介:

    陈林雅(1990—),女,博士研究生,研究方向为桥梁基础流固土耦合动力学及长期服役安全控制,E-mail:chenlinya01@yeah.net

    通讯作者:

    郑东生(1964—),男,教授,博士,研究方向为波浪-海床-结构物相互作用理论,E-mail:dsjeng@home.swjtu.edu.cn

  • 中图分类号: V221.3

Influence of Porous Seabed Characteristics on Wave Forces Acting on Monopile

  • 摘要: 为研究多孔介质海床的波浪衰减作用及单桩所受波浪力的变化规律,采用修正RANS方程和Forchheimer饱和阻力模型控制多孔介质内部流体流动,运用流体体积法追踪自由液面,建立波浪-多孔介质海床-单桩相互作用三维数值分析模型. 首先,基于波浪与多孔介质海床相互作用过程,研究了多孔介质海床对波浪传播的衰减作用;其次,分析了相同波浪条件下多孔介质海床及刚性海床时单桩所受波浪力的数值变化,突出了考虑海床多孔特性的必要性;最后,采用单一变量控制法,进一步研究了单桩所受波浪力数值随海床多孔特性参数的变化规律. 研究结果表明,海床多孔特性对波浪传播具有明显的衰减作用;给定的波浪参数和多孔介质海床条件下,单桩所受波浪力最大值比刚性海床情况提高约35%,若忽略海床多孔特性结构物会因低估波浪力数值而造成安全隐患;另外,结构物所受波浪力与海床孔隙率、颗粒直径、海床厚度及双层海床分布厚度及每层孔隙率密切相关. 其中,波浪力最大值随着海床颗粒直径的增加而递减,随着孔隙率的增大先增加后降低,且孔隙率会影响波浪力随海床厚度变化的趋势.

     

  • 图 1  桩基式海上风机

    Figure 1.  Pile foundation type offshore wind turbine

    图 2  波浪-多孔介质海床-单桩相互作用三维示意

    Figure 2.  3D sketch of wave-porous seabed-monopile- interactions

    图 3  多孔介质孔隙流动体积平均法示意

    Figure 3.  Sketch of pore volume average method forporous media

    图 4  海绵层消波原理

    Figure 4.  Wave attenuation of sponge layer

    图 5  网格划分及FAVOR显示图

    Figure 5.  Mesh generation and FAVOR display

    图 6  数值波剖面对比结果

    Figure 6.  Comparision of numerical wave profiles

    图 7  波浪沿多孔介质海床衰减数值结果与相应试验结果对比

    Figure 7.  Comparison of numerical results for wave dampingalong the porous seabed with the correspondingexperimental results

    图 8  单桩所受波浪力时程曲线

    Figure 8.  Time history curves of wave forces acting on monopile

    图 9  Fx,max随海床孔隙率的变化曲线

    Figure 9.  Variation curve of maximum wave force inthe x axis with seabed porosity

    图 10  Fx的时程曲线

    Figure 10.  Time history curves of wave force in the x axis

    图 11  Fx,max随多孔介质海床颗粒直径的变化曲线

    Figure 11.  Variation curve of maximum wave force in the x axis with partical size

    图 12  不同海床孔隙率条件下Fx,max随海床相对厚度的变化曲线

    Figure 12.  Variation curves of maximum wave force inthe x axis with seabed relative thickness with different seabed porosity

    图 13  不同双层海床孔隙率特性下Fx,max随海床厚度的变化曲线

    Figure 13.  Variation curves of maximum wave force in the x axis with seabed thickness with different porosity in two-layered seabed

  • 王伟, 杨敏. 海上风电机组地基基础: 设计理论与工程应用[M]. 北京: 中国建筑工业出版社, 2014: 1-20
    LOSADA I J, LARA J L, JESUS M D. Modeling the interaction of water waves with porous coastal structures[J]. Journal of Waterway,Port,Coastal,and Ocean Engineering, 2016, 142(6): 1-18.
    PUTNAM J A. Loss of wave energy due to percolation in a permeable sea bottom[J]. Transactions,American Geophysical Union, 1949, 30(3): 349-356. doi: 10.1029/TR030i003p00349
    LIU P F. Damping of water waves over porous bed[J]. Journal of the Hydraulics Division, 1973, 99: 2263-2271.
    SAVAGE R P, FAIRCHILD J C. Laboratory study of energy losses by bottom friction and percolation[J]. Beach Erosion Board,Corps of Engineers,Technical Memorandum, 1953, 31: 1-25.
    LIU P L F, DALRYMPLE R A. The damping of gravity waves due to percolation[J]. Coastal Engineering, 1984, 8(1): 33-49. doi: 10.1016/0378-3839(84)90021-8
    KARUNARATHNA S, LIN P Z. Numerical simulation of wave damping over porous seabeds[J]. Coastal Engineering, 2006, 53(10): 845-855. doi: 10.1016/j.coastaleng.2006.05.003
    MORISON J R, JOHNSON J W, SCHAAF S A. The force exerted by surface waves on piles[J]. Journal of Petroleum Technology, 1950, 2(5): 149-154. doi: 10.2118/950149-G
    MACCAMY R C, FUCHS R A. Wave forces on piles:a diffraction theory[J]. Beach Erosion Board, 1954, 69: 100-103.
    李世森,张伟,秦崇仁. 大直径圆筒结构上波浪力的数值模拟与实验研究[J]. 中国港湾建设,2003(2): 11-16. doi: 10.3969/j.issn.1003-3688.2003.02.004

    LI Shisen, ZHANG Wei, QIN Chongren. Numerical simulation and experimental study of wave force on large diameter cylindrical structure[J]. China Harbour Engineering, 2003(2): 11-16. doi: 10.3969/j.issn.1003-3688.2003.02.004
    祝兵,宋随弟,谭长建. 三维波浪作用下大直径圆柱绕流的数值模拟[J]. 西南交通大学学报,2012,47(2): 224-229.

    ZHU Bing, SONG Suidi, TAN Changjian. Numerical simulation for diffraction around large-diameter circular cylinder subjected to three-dimension wave[J]. Journal of Southwest Jiaotong University, 2012, 47(2): 224-229.
    张文娟,王媛,倪小东. Forchheimer型非达西渗流参数特征分析[J]. 水电能源科学,2014(1): 52-54,164.

    ZHANG Wenjuan, WANG Yuan, NI Xiaodong. Analysis of parameters characteristics of Forchheimer’s non-Darcy seepage[J]. Water Resources and Power, 2014(1): 52-54,164.
    BOUSSINESQ J. Theory of wave and swells propagated in long horizontal rectangular canal and imparting to the liquid contained in this canal[J]. Journal of Mathematiques Pures et Appliquees, 1872, 17(2): 55-108.
    RODI W. Turbulence models and their application in hydraulics: a state of the art review[M]. 3rd edition. Rotterdam: CRC Press, 1984: 26-33
    LAUNDER B E, SPALDING D B. The numerical computation of turbulence flows[J]. Computer Methods in Applied Mechanics and Engineering, 1974, 3(1): 269-289.
    CARMAN P C. Fluid flow through granular beds[J]. Transactions of the Institution of Chemical Engineering, 1937, 15(1): 150-167.
    DEAN R G. Relative validation of water wave theories[J]. Journal of the Waterways,Harbors and Coastal Engineering Division, 1970, 96(1): 105-119.
    FENTON J D. A fifth-order stokes theory for steady waves[J]. Journal of Waterway,Port,Coastal,and Ocean Engineering, 1985, 111(2): 216-234.
    ORLANSK I. A simple boundary condition for unbounded hyperbolic flows[J]. Journal of Computational Physics, 1976, 21(3): 251-269. doi: 10.1016/0021-9991(76)90023-1
    HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225. doi: 10.1016/0021-9991(81)90145-5
  • 加载中
图(13)
计量
  • 文章访问数:  463
  • HTML全文浏览量:  246
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-10
  • 修回日期:  2018-04-03
  • 网络出版日期:  2018-04-03
  • 刊出日期:  2019-04-01

目录

    /

    返回文章
    返回