Seismic Performance of Owner-Built RC Frame Structures in Nepal
-
摘要: 2015年8.1级尼泊尔郭尔喀地震对尼泊尔北部民居造成了较大的破坏. 与采用砖木、砖石、土坯结构等结构形式的传统民居相比,当地常见的含砌体填充墙的自建钢筋混凝土(RC)框架结构的震害相对较轻. 通过静力弹塑性分析方法,从抗侧承载力、延性和抗震能力指数等方面,对比了这一结构体系和按照我国抗震规范设计的约束砌体结构的抗震能力. 针对不同层数结构的分析结果表明,在结构整体布置、层数和用钢量大致相同的条件下,与我国不同设防水平下的约束砌体结构相比,尼泊尔自建RC框架结构均表现出更好的延性性能,但其综合抗震能力随着楼层数的增加而显著降低. 对3、4层的结构,其抗震能力甚至高于按我国8度设防的要求设计建造的约束砌体结构,但对5、6层的结构,其抗震能力则远远低于后者.Abstract: The 2015 Ms8.1 Gorkha earthquake in Nepal caused severe damage to local dwellings in Northern Nepal. Compared with brick-wood buildings, stone masonry, or adobe structures, owner-built reinforced concrete (RC) frame structures with masonry infills, which are commonly seen in both urban and rural areas in Nepal, sustained less severe damage. The seismic capacity of typical RC frame structures with masonry infills, which are representative of the local practice in Nepal, was compared with that of confined masonry structures conforming to the Chinese seismic design practice. The comparison was made in terms of lateral strength, ductility, and a previously proposed seismic capacity index through nonlinear static analysis. The analysis results on buildings with different numbers of stories show that the owner-built RC frames with masonry infills in Nepal exhibit higher ductility when the structural layout and amount of reinforcement are similar. However, their seismic capacity decreases significantly as the number of stories increases. For three and four-story buildings, owner-built RC frames exhibit higher seismic capacity compared with confined masonry structures in Intensity 8 regions in China, but exhibit much lower seismic capacity than the latter when the building is five stories or more.
-
表 1 我国约束砌体结构设计参数
Table 1. Design parameters of confined masonry structures in China for analysis
层数/层 设防烈度/度 墙厚/mm 砌块、砂浆强度等级 圈梁、构造柱截面类型 1阶周期/s 3 6~8(0.2g) 240 MU10、M5 Ⅰ 0.14 8(0.3g) 240 首层MU15、M7.5,其它MU10、M5 Ⅰ 0.12 9 370 首层MU20、M10,其它MU15、M7.5 Ⅱ 0.09 4 6~8(0.2g) 240 MU10、M5 Ⅰ 0.19 8(0.3g) 370 1~2层MU20、M10,其它MU10、M5 Ⅱ 0.13 9 370 1~2层MU30、M15,其它MU15、M7.5 Ⅱ 0.11 5 6~7(0.15g) 240 MU10、M5 Ⅰ 0.24 8(0.2g) 240 1~2层MU15、M7.5,其它MU10、M5 Ⅰ 0.21 8(0.3g) 370 1~2层MU30、M15,其它MU10、M5 Ⅱ 0.16 6 6~7(0.15g) 240 MU10、M5 Ⅰ 0.30 8(0.2g) 370 1~3层MU15、M7.5,其它MU10、M5 Ⅱ 0.23 -
周炳章. 砌体结构抗震的新发展[J]. 建筑结构,2002,32(5): 69-72.ZHOU Bingzhang. Recent seismic development of masonry structure[J]. Building Structure, 2002, 32(5): 69-72. 王亚勇. 汶川地震建筑震害启示-抗震概念设计[J]. 建筑结构学报,2008,29(4): 20-25. doi: 10.3321/j.issn:1000-6869.2008.04.003WANG Yayong. Lessons learnt from building damages in the Wenchuan earthquake-seismic concept design of buildings[J]. Journal of Building Structures, 2008, 29(4): 20-25. doi: 10.3321/j.issn:1000-6869.2008.04.003 曲哲,钟江荣,孙景江. 芦山7.0级地震砌体结构的震害特征[J]. 地震工程与工程振动,2013,33(3): 27-35.QU Zhe, ZHONG Jiangrong, SUN Jingjiang. Seismic damage to masonry structures in Ms7.0 Lushan earthquake[J]. Engineering and Engineering Dynamics, 2013, 33(3): 27-35. 清华大学土木工程结构专家组,西南交通大学土木工程结构专家组,北京交通大学土木工程结构专家组. 汶川地震建筑震害分析[J]. 建筑结构学报,2008,29(4): 1-9. doi: 10.3321/j.issn:1000-6869.2008.04.001Civil and Structural Groups of Tsinghua University, Xinan Jiaotong University, Beijing Jiaotong University. Analysis on seismic damage of buildings in the Wenchuan earthquake[J]. Journal of Building Structures, 2008, 29(4): 1-9. doi: 10.3321/j.issn:1000-6869.2008.04.001 闫培雷,孙柏涛,王明振. 芦山7.0级地震芦阳镇的建筑物震害[J]. 土木工程学报,2014,47(11): 39-44.YAN Peilei, SUN Baitao, WANG Mingzhen. Seismic damage of building structures in Luyang Town during Lushan earthquake with a magnitude of 7.0[J]. China Civil Engineering Journal, 2014, 47(11): 39-44. ARMAND V D R, JAMES D. Deadly Nepal Gorkha/Kodari earthquakes -8, 902 people dead +250 missing & list of names[EB/OL]. (2015-5-31)[2015-5-26] . http://earthquake-report.com/2015/04/25/massive-earthquake-nepal-on-april-25-2015/ 潘毅,王晓玥,许浒,等. 脉冲型地震动作用下尼泊尔砖木遗产建筑易损性分析[J]. 西南交通大学学报,2017,52(6): 1156-1163. doi: 10.3969/j.issn.0258-2724.2017.06.016PAN Yi, WANG Xiaoyue, XU Hu, et al. Seismic fragility analysis of Nepalese brick-timber heritage structures under near-fault pulse-like ground motions[J]. Journal of Southwest Jiaotong University, 2017, 52(6): 1156-1163. doi: 10.3969/j.issn.0258-2724.2017.06.016 CHAULAGAIN H, RODRIGUES H, SILVA V, et al. Earthquake loss estimation for the Kathmandu Valley[J]. Bulletin of Earthquake Engineering, 2016, 14(1): 59-88. doi: 10.1007/s10518-015-9811-5 CHAULAGAIN H, RODRIGUES H, JARA J, et al. Seismic response of current RC buildings in Nepal:a comparative analysis of different design/construction[J]. Engineering Structures, 2013, 49(4): 284-294. CHAULAGAIN H, RODRIGUES H, SPACONE E, et al. Response reduction factor of irregular RC buildings in Kathmandu valley[J]. Earthquake Engineering and Engineering Vibration, 2014, 13(3): 455-470. doi: 10.1007/s11803-014-0255-8 CHAULAGAIN H, RODRIGUES H, SPACONE E, et al. Design procedures of reinforced concrete framed buildings in Nepal and its impact on seismic safety[J]. Advances in Structural Engineering, 2014, 17(10): 1419-1442. doi: 10.1260/1369-4332.17.10.1419 潘毅,王忠凯,时胜杰,等. 尼泊尔8.1级地震加德满都-樟木沿线民居震害调查与分析[J]. 湖南大学学报 (自然科学版),2017,44(3): 35-44.PAN Yi, WANG Zhongkai, SHI Shengjie, et al. Investigation and analysis on seismic damage of residential buildings along the highway from Kathmandu to Zhangmu in Ms8.1 Gorkha earthquake[J]. Journal of Hunan University (Natural Sciences), 2017, 44(3): 35-44. 曲哲,杨永强. 尼泊尔自建民居在2015年地震序列中的震害[J]. 地震工程与工程振动,2015,35(4): 51-59.QU Zhe, YANG yongqiang. Seismic damages to owner-built dwellings in the 2015 earthquake sequence in Nepal[J]. Engineering and Engineering Dynamics, 2015, 35(4): 51-59. Ministry of Urban Development. Nepal national building code: NBC-205: 2012[S]. Kathmandu: Department of Urban Development and Building Construction, 2012 中华人民共和国住房和城乡建设部. 砌体结构设计规范: GB 50003—2011[S]. 北京: 中国建筑工业出版社, 2011 张昊宇,王涛,林旭川,等. 尼泊尔8.1级地震钢筋混凝土框架典型震害及讨论[J]. 工程力学,2016,33(9): 59-68.ZHANG Haoyu, WANG Tao, LIN Xuchuan, et al. Seismic damage of RC frame in Nepal Ms8.1 earthquake[J]. Engineering Mechanics, 2016, 33(9): 59-68. 中国人民共和国建设部. 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2010 CHAULAGAIN H, RODRIGUES H, SPACONE E, et al. Seismic response of current RC buildings in Kathmandu Valley[J]. Structural Engineering and Mechanics, 2015, 53(4): 791-818. doi: 10.12989/sem.2015.53.4.791 郑妮娜,李英民,潘毅. 芯柱式构造柱约束的低层砌体结构抗震性能[J]. 西南交通大学学报,2011,46(1): 24-29. doi: 10.3969/j.issn.0258-2724.2011.01.004ZHENG Nina, LI Yingmin, PAN Yi. Seismic behavior of low masonry structure with core-tie-columns[J]. Journal of Southwest Jiaotong University, 2011, 46(1): 24-29. doi: 10.3969/j.issn.0258-2724.2011.01.004 杨卫忠. 砌体受压本构关系模型[J]. 建筑结构,2008,38(10): 80-82.YANG Weizhong. Constitutive relationship model for masonry materials in compression[J]. Building Structure, 2008, 38(10): 80-82. FEMA274. NEHRP Commentary on the guidelines for the rehabilitation of building[R]. Washington D. C.: Federal Emergency Management Agency, 1996 冯鹏,强翰林,叶列平. 材料、构件、结构的" 屈服点”定义与讨论[J]. 工程力学,2017,34(3): 36-46.FENG Peng, QIANG Hanlin, YE Lieping. Discussion and definition on yield points of materials,members and structures[J]. Engineering Mechanics, 2017, 34(3): 36-46. 李英民,郑妮娜,夏洪流,等. 芯柱式构造柱约束墙体抗震变形能力试验研究[J]. 土木建筑与环境工程,2010,32(4): 1-6.LI Yingmin, ZHENG Nina, XIA Hongliu, et al. Pseudo-static test study on seismic deformation behavior of masonry wall constrained by core-tie-columns[J]. Journal of Civil Architectural & Environmental Engineering, 2010, 32(4): 1-6. 林世镔,谢礼立. 基于能力谱的建筑物抗震能力研究——以汶川地震两栋钢筋混凝土框架结构抗震能力分析为例[J]. 土木工程学报,2012,45(5): 31-40.LIN Shibin, XIE Lili. A study of seismic capacity of building based on capacity spectrum—Case studies on seismic capacity analysis of two RC frame structures in the Wenchuan earthquake[J]. China Civil Engineering Journal, 2012, 45(5): 31-40.