• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

脉冲风洞测力系统结构动力学特性

吕金洲 张小庆 赵晓男 陈光雄 吴颖川

吕金洲, 张小庆, 赵晓男, 陈光雄, 吴颖川. 脉冲风洞测力系统结构动力学特性[J]. 西南交通大学学报, 2019, 54(6): 1305-1313. doi: 10.3969/j.issn.0258-2724.20170737
引用本文: 吕金洲, 张小庆, 赵晓男, 陈光雄, 吴颖川. 脉冲风洞测力系统结构动力学特性[J]. 西南交通大学学报, 2019, 54(6): 1305-1313. doi: 10.3969/j.issn.0258-2724.20170737
LÜ Jinzhou, ZHANG Xiaoqing, ZHAO Xiaonan, CHEN Guangxiong, WU Yingchuan. Structural Dynamic Characteristics of Force-Measurement System for Impulse Wind Tunnel[J]. Journal of Southwest Jiaotong University, 2019, 54(6): 1305-1313. doi: 10.3969/j.issn.0258-2724.20170737
Citation: LÜ Jinzhou, ZHANG Xiaoqing, ZHAO Xiaonan, CHEN Guangxiong, WU Yingchuan. Structural Dynamic Characteristics of Force-Measurement System for Impulse Wind Tunnel[J]. Journal of Southwest Jiaotong University, 2019, 54(6): 1305-1313. doi: 10.3969/j.issn.0258-2724.20170737

脉冲风洞测力系统结构动力学特性

doi: 10.3969/j.issn.0258-2724.20170737
基金项目: 国家自然科学基金资助项目(51775461)
详细信息
    作者简介:

    吕金洲(1987—),男,博士研究生, 研究方向为脉冲风洞测力技术, E-mail:shenqiuwo@126.com

    通讯作者:

    张小庆(1962—),男,副研究员,博士,研究方向为高超声速飞行器技术,E-mail:mukai_zhang@126.com

  • 中图分类号: TJ760.1 V216.8

Structural Dynamic Characteristics of Force-Measurement System for Impulse Wind Tunnel

  • 摘要: 脉冲风洞试验过程时,试验气流引起测力系统强烈振动对测试结果产生严重干扰. 为解决测力系统振动对测力结果干扰的问题,首先根据测力系统结构特点建立了相应的动力学模型;其次,对其进行了虚拟标定和模态分析;第三,对测力系统进行了瞬态分析和惯性补偿,获得了相应的瞬态输出;最后,对测力系统进行了风洞试验,分别获得了相应的弹性输出结果和惯性输出结果. 分析和试验结果表明:惯性补偿后,测力系统均值测量精度略有提高,瞬态测量精度大幅提高;惯性补偿后瞬态测量精度最低为87.4%,出现在测力系统共振时,其他状态下,瞬态测量精度超过91%;惯性补偿后的测力系统输出结果振动基本消失,说明惯性补偿方法能够消除振动对输出结果的干扰.

     

  • 图 1  风洞测力系统

    Figure 1.  Force-measurement system for wind tunnel

    图 2  三分量测力天平

    Figure 2.  3-component force balance

    图 3  测力系统

    Figure 3.  Force measuring system

    图 4  天平应变计粘贴位置

    Figure 4.  Strain gauge positions on force balance

    图 5  测力系统有限元模型

    Figure 5.  Finite element model of FMS

    图 6  试验段总压及天平测量结果

    Figure 6.  Total pressure of test chamber and measurement results of force balance

    图 7  测量系统振型

    Figure 7.  Vibration modes of FMS

    图 8  测力系统加速度测点

    Figure 8.  Acceleration detection points of FMS

    图 9  H-f正弦阶跃载荷加载时测力系统仿真结果

    Figure 9.  Simulation results of FMS under action of H-f sine step load

    图 10  N-f正弦阶跃载荷加载时测力系统仿真结果

    Figure 10.  Simulation results of FMS under action of N-f sine step load

    图 11  D-f正弦阶跃载荷加载时测力系统仿真结果

    Figure 11.  Simulation results of FMS under action of D-f sine step load

    图 12  测力系统惯性补偿前输出结果误差

    Figure 12.  Transient measurement errors of FMS before inertia compensation

    图 13  测力系统惯性补偿后输出结果误差

    Figure 13.  Transient measurement errors of FMS after inertia compensation

    图 14  风洞试验测力系统

    Figure 14.  FMS in wind tunnel

    图 15  风洞试验结果

    Figure 15.  Wind tunnel test results

    表  1  测力系统模态参数

    Table  1.   Mode parameters of FMS

    阶数频率振型描述 阶数频率振型描述
    180.65z 轴旋转 3120.99沿 x 轴振动
    6172.64沿 y 轴振动
    下载: 导出CSV

    表  2  测力系统各分量均值测量精度

    Table  2.   Mean measurement accuracy of FMS in each component %

    加载频率惯性补偿FxFyMz
    H-f 99.527 99.508 99.077
    99.653 99.71 99.195
    N-f 99.305 99.391 99.088
    99.69 99.775 99.319
    D-f 99.151 99.253 98.889
    99.724 99.787 99.450
    下载: 导出CSV

    表  3  测力系统瞬态测量精度最小值

    Table  3.   Minimum values in measurement accuracy of FMS %

    分量H-fN-fD-f
    Fx 96.136 93.284 95.004
    Fy 93.462 91.678 92.292
    Mz 95.644 87.388 93.616
    下载: 导出CSV
  • STALKER R J. A study of the free-piston shock tunnel[J]. AIAA Journal, 1967, 5(12): 2160-2165.
    PATE S R, SILM L G, STALLINGS D W, et al. Development of an MHD-augmented,high enthalpy,shock tunnel facility[J]. AIAA Journal, 1974, 12(3): 289-297. doi: 10.2514/3.49223
    OLIVIER H, GROENIG H, BOZEC A L. Hypersonic model testing in a shock tunnel[J]. AIAA Journal, 1995, 33(2): 262-265. doi: 10.2514/3.12429
    ROBINSON M J, MEE D J, TSAI C Y, et al. Three-component force measurements on a large scramjet in a shock tunnel[J]. Journal of Spacecraft & Rockets, 2004, 41(3): 416-425.
    SCHULTZ I A, GOLDENSTEIN C S, STRAND C L, et al. Hypersonic scramjet testing via diode laser absorption in a reflected shock tunnel[J]. Journal of Propulsion & Power, 2014, 30(6): 1586-1594.
    TANNO H, KOMURO T, SATO K, et al. Aerodynamic force measurement technique with accelerometers in the impulsive facility HIEST[M]//Shock Waves. Berlin: Springer, 2009: 471-476.
    TANNO H, KOMURO T, TAKAHASHI M, et al. Unsteady force measurement technique in shock tubes[J]. Review of Sci-entific Instruments, 2004, 75(2): 532-536. doi: 10.1063/1.1641156
    SINGH P, MENEZES V, IRIMPAN K J, et al. Impulse force bal-ance for ultrashort duration hypersonic test facili-ties[DB/OL]. (2015-5-24)[2017-08-18]. https://www.hindawi.com/journals/sv/2015/803253/.
    SINGH P, TRIVEDI S, MENEZES V, et al. Dynamic calibration and validation of an accelerometer force balance for hypersonic lifting models[J]. The Scientific World Journal, 2014, 2014(6): 813759.
    TRIVEDI S, MENEZES V. Measurement of yaw,pitch and ide-force on a lifting model in a hypersonic shock tunnel[J]. Measurement, 2012, 45(7): 1755-1764. doi: 10.1016/j.measurement.2012.04.008
    SATHEESH K, JAGADEESH G. Analysis of an internally mount-able accelerometer balance system for use with non-isotropic models in shock tunnels[J]. Measurement, 2009, 42(6): 856-862. doi: 10.1016/j.measurement.2009.01.010
    SARAVANAN S, JAGADEESH G, REDDY K P J. Aerodynamic force measurement using 3-component accelerometer force balance system in a hypersonic shock tunnel[J]. Shock Waves, 2009, 18(6): 425-435. doi: 10.1007/s00193-008-0172-8
    SMITH A L, MEE D J, DANIEL W J T, et al. Design,modelling and analysis of a six component force balance for hypervelocity wind tunnel testing[J]. Computers & Structures, 2001, 79(11): 1077-1088.
    LAURENCE S J, HORNUNG H G. Image-based force and mo-ment measurement in hypersonic facilities[J]. Experiments in Fluids, 2009, 46(2): 343-353. doi: 10.1007/s00348-008-0565-6
    LAURENCE S J, KARL S. An improved visualization-based force-measurement technique for short-duration hypersonic facilities[J]. Experiments in Fluids, 2010, 48(6): 949-965. doi: 10.1007/s00348-009-0780-9
    刘洪山,徐翔,姜华. 应力波天平在国内激波风洞上的应用[J]. 实验流体力学,2006,20(1): 36-39. doi: 10.3969/j.issn.1672-9897.2006.01.009

    LIU Hongshan, XU Xiang, JIANG Hua, et al. The application of the stress wave force balance in shock tunnel[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(1): 36-39. doi: 10.3969/j.issn.1672-9897.2006.01.009
    WANG Yunpeng, LIU Y, LUO C, et al. Force measurement using strain-gauge balance in a shock tunnel with long test duration[J]. Review of Scientific Instruments, 2016, 87(5): 1068.
    WANG Y, LIU Y, JIANG Z. Design of a pulse-type strain gauge balance for a long-test-duration hypersonic shock tunnel[J]. Shock Waves, 2016, 26(6): 1-10.
    贺伟,童泽润,李宏斌. 单模块超燃发动机推力测量天平研制[J]. 航空动力学报,2006,20(1): 36-39. doi: 10.3969/j.issn.1000-8055.2006.01.007

    HE Wei, TONG Zerun, LI Hongbin. Investigation of thrust balance for the single module scramjet[J]. Journal of Aerospace Power, 2006, 20(1): 36-39. doi: 10.3969/j.issn.1000-8055.2006.01.007
    王锋,贺伟,毛鹏飞,等. 脉冲风洞测力系统建模与载荷辨识方法研究[J]. 振动与冲击,2015,34(1): 94-103.

    WANG Feng, HE Wei, MAO Pengfei, et al. Dynamic modeling of testing system in impulse facilities and load identification method[J]. Journal of Vibration and Shock, 2015, 34(1): 94-103.
    程忠宇,陈宏,张琦. 多加速度计振动分离惯性补偿测力技术[J]. 流体力学实验与测量,1999,13(4): 57-61. doi: 10.3969/j.issn.1672-9897.1999.04.012

    CHENG Zhongyu, CHEN Hong, ZHANG Qi. Inertia compensation technology based on multi-accelerometer vibration separating[J]. Experiments and Measurements in Fluid Mechanics, 1999, 13(4): 57-61. doi: 10.3969/j.issn.1672-9897.1999.04.012
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  531
  • HTML全文浏览量:  196
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-18
  • 修回日期:  2018-08-31
  • 网络出版日期:  2018-09-05
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回