• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

近场多脉冲地震作用下高墩桥梁地震响应分析

郑史雄 陈志强 陈志伟 李晰

郑史雄, 陈志强, 陈志伟, 李晰. 近场多脉冲地震作用下高墩桥梁地震响应分析[J]. 西南交通大学学报, 2019, 54(5): 897-907. doi: 10.3969/j.issn.0258-2724.20170725
引用本文: 郑史雄, 陈志强, 陈志伟, 李晰. 近场多脉冲地震作用下高墩桥梁地震响应分析[J]. 西南交通大学学报, 2019, 54(5): 897-907. doi: 10.3969/j.issn.0258-2724.20170725
ZHENG Shixiong, CHEN Zhiqiang, CHEN Zhiwei, LI Xi. Seismic Response Analysis of High-Pier Bridge under Near-Fault Multiple Pulse Record Excitation[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 897-907. doi: 10.3969/j.issn.0258-2724.20170725
Citation: ZHENG Shixiong, CHEN Zhiqiang, CHEN Zhiwei, LI Xi. Seismic Response Analysis of High-Pier Bridge under Near-Fault Multiple Pulse Record Excitation[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 897-907. doi: 10.3969/j.issn.0258-2724.20170725

近场多脉冲地震作用下高墩桥梁地震响应分析

doi: 10.3969/j.issn.0258-2724.20170725
基金项目: 中国铁路总公司科技开发项目(2015G002-A);教育部春晖计划资助项目(Z2014032)
详细信息
    作者简介:

    郑史雄(1965—),男,教授,博士,研究方向为桥梁抗风抗震,电话:13608058757,E-mail:zhengsx@home.swjtu.edu.cn

  • 中图分类号: U442.5

Seismic Response Analysis of High-Pier Bridge under Near-Fault Multiple Pulse Record Excitation

  • 摘要: 为了研究近断层地震的多脉冲效应对不规则高墩大跨桥梁非线性地震响应的影响,首先,采用眼观识别的方法选取了典型的多脉冲、单脉冲和非脉冲3组地震动;然后,采用小波变换识别方法和能量识别方法对其脉冲性进行识别,研究了脉冲地震动识别方法对多脉冲地震动的适用性;最后,以某大跨度高墩桥梁为例,基于OpenSees建立了其非线性有限元模型,对其进行了非线性地震响应分析,对比研究了近断层多脉冲地震动及单脉冲地震动对不规则高墩桥梁非线性地震响应的影响. 研究结果表明:现有的近断层脉冲识别方法只适用于速度时程中只含有一个主脉冲的地震动,对于多脉冲地震动,其失效的可能性非常大;近断层脉冲地震动对不规则高墩桥梁具有更强的破坏性,特别是在多脉冲地震作用下,1号、2号两个高墩的墩顶位移需求分别增加了118.9%和109.6%,墩底弯矩和墩底曲率也有明显的增大;近场多脉冲地震作用下主梁的碰撞次数增大了3~5倍,碰撞力也会增大2~3倍,主梁更容易发生严重的碰撞破坏,在抗震设计时应采取适当防撞措施.

     

  • 图 1  单脉冲地震记录

    Figure 1.  Single pulse seismic records

    图 3  非脉冲地震

    Figure 3.  None pulse seismic records

    图 2  多脉冲地震记录

    Figure 2.  Multiple pulse seismic records

    图 4  桥梁总体布置(单位:cm)

    Figure 4.  Layout of bridge (unit:cm)

    图 5  碰撞力-位移关系

    Figure 5.  Relationship of collision force and displacement

    图 6  桥梁非线性动力学分析模型

    Figure 6.  Nonlinear dynamic analysis model of bridge

    图 7  桥墩峰值响应对比

    Figure 7.  Comparison of pier response under different type records

    图 8  墩底弯矩-曲率滞回响应

    Figure 8.  Comparison of plastic hinge of pier bottom

    图 9  考虑脉冲效应的碰撞力对比

    Figure 9.  Compare of pounding force considering impulse effects

    图 10  碰撞响应与速度脉冲的对应关系

    Figure 10.  Relationship between pounding response and velocity pulse

    表  1  3类地震动详细信息

    Table  1.   Detail of selected three type ground motions

    地震动类型地震记录Rrup/kmPGA/(× gSFTp/sPIEp
    多脉冲TCU059-NS17.110.1652.5427.30.218 10.300
    TCU104-NS12.870.0894.7376.90.826 50.379
    TCU107-EW15.990.1303.2327.40.129 70.236
    TCU107-NS15.990.1472.8625.60.000 40.091
    单脉冲TCU031-EW30.170.1153.6566.21.000 00.557
    TCU036-EW19.830.1373.0715.80.999 90.562
    TCU040-EW22.060.1622.5925.61.000 00.621
    TCU049-EW3.760.2791.5078.80.999 80.596
    非脉冲CHY074-EW6.200.3221.3030.044 90.237
    TCU079-NS10.970.4240.9900.003 40.172
    TCU070-EW19.000.2541.6540.162 00.049
    TCU076-NS2.740.4280.9800.102 80.194
    下载: 导出CSV

    表  2  Hertz-Damp模型特征参数

    Table  2.   Properties of Hertz-Damp model

    特征参数取值
    初始间隙gp/mm100
    屈服位移δy/mm1.6
    初始刚度K1/(kN•mm–18 472
    应变硬化刚度K1/(kN•mm–12 916
    等效刚度Keff/(kN•mm–13 472
    最大入侵位移δm/mm16
    下载: 导出CSV

    表  3  桥梁动力特性

    Table  3.   Dynamic characteristics of the selected bridge

    振型阶数周期/s频率/Hz质量参与系数/%
    纵桥向横桥向
    第 1 阶 1.323 0.756 61.15 0
    第 2 阶 1.278 0.783 0 40.92
    第 3 阶 0.953 1.049 6.33 0
    第 4 阶 0.902 1.108 0 0.56
    第 5 阶 0.696 1.436 0.11 0
    第 6 阶 0.688 1.454 0 15.65
    下载: 导出CSV

    表  4  近断层脉冲效应对桥墩地震响应的放大系数

    Table  4.   Amplification factor of near-fault impulse effect on seismic response of pier

    墩号单一脉冲多脉冲
    曲率放大
    系数
    位移放大
    系数
    弯矩放大
    系数
    剪力放大
    系数
    曲率放大
    系数
    放大系数
    位移
    弯矩放大
    系数
    剪力放大
    系数
    1号1.2211.1031.0431.0293.7072.1891.0531.385
    2号1.9261.0851.0190.9838.9242.0961.1191.543
    3号0.8640.8520.8660.9181.1931.2111.1921.181
    下载: 导出CSV

    表  5  近断层脉冲效应对主梁碰撞响应的影响

    Table  5.   Details of maximum pounding force and average pounding frequency

    脉冲类型梁-台碰撞 梁-梁碰撞 梁-台碰撞
    碰撞力/(× 107 N)碰撞次数/次 碰撞力/(× 108 N)碰撞次数/次 碰撞力/(× 108 N)碰撞次数/次
    多脉冲29.7032.50 3.6723.00 32.5027.75
    单脉冲8.739.95 1.419.00 8.567.25
    非脉冲9.675.50 1.155.25 10.605.00
    下载: 导出CSV
  • 梁智垚. 非规则高墩桥梁抗震设计理论研究[D]. 上海: 同济大学, 2007
    JIA H Y, ZHANG D Y, ZHENG S X, et al. Local site effects on a high-pier railway bridge under tridirectional spatial excitations:nonstationary stochastic analysis[J]. Soil Dynamics & Earthquake Engineering, 2013, 52(6): 55-69.
    陈旭,李建中,刘笑显. 墩身高阶振型对高墩地震反应影响[J]. 同济大学学报,2017,45(2): 159-166.

    CHEN Xu, LI Jianzhong, LIU Xiaoxian. Seismic performance of tall piers influenced by higher mode effects of piers[J]. Journal of Tongji University, 2017, 45(2): 159-166.
    陈志伟,蒲黔辉,李晰,等. 行波效应对大跨连续刚构桥易损性影响分析[J]. 西南交通大学学报,2017,52(1): 23-29. doi: 10.3969/j.issn.0258-2724.2017.01.004

    CHEN Zhiwei, PU Qianhui, LI Xi, et al. Fragility analysis of large span continuous rigid bridge considering wave passage effect[J]. Journal of Southwest Jiao-tong University, 2017, 52(1): 23-29. doi: 10.3969/j.issn.0258-2724.2017.01.004
    李立峰,吴文朋,胡思聪,等. 考虑氯离子侵蚀的高墩桥梁时变地震易损性分析[J]. 工程力学,2016,33(1): 163-170.

    LI Lifeng, WU Wenpeng, HU Sicong, et al. Time-dependent seismic fragility analysis of high pier bridge based on chlorideion induced corrosion[J]. Engineering Mechanics, 2016, 33(1): 163-170.
    董俊,单德山,张二华,等. 非规则桥梁近、远场地震易损性对比分析[J]. 哈尔滨工业大学学报,2016,48(3): 159-165.

    DONG Jun, SHAN Deshan, ZHANG Erhua, et al. Near and far-field seismic fragility comparative analysis of irregular bridge[J]. Journal of Harbin Institute of Technology, 2016, 48(3): 159-165.
    董俊,单德山,张二华,等. 非规则连续刚构桥地震易损性分析[J]. 西南交通大学学报,2015,50(5): 845-851. doi: 10.3969/j.issn.0258-2724.2015.05.012

    DONG Jun, SHAN Deshan, ZHANG Erhua, et al. Seismic fragility of irregular continuous rigid Frame bridge[J]. Journal of Southwest Jiaotong University, 2015, 50(5): 845-851. doi: 10.3969/j.issn.0258-2724.2015.05.012
    MAVROEIDIS G P, DONG G, PAPAGEORGIOU A S. Near-fault ground motions,and the response of elastic and inelastic single-degree-of-freedom (SDOF) systems[J]. Earthquake Engineering & Structural Dynamics, 2004, 33(9): 1023-1049.
    YANG D, PAN J, LI G. Interstory drift ratio of building structures subjected to near-fault ground motions based on generalized drift spectral analysis[J]. Soil Dynamics & Earthquake Engineering, 2010, 30(11): 1182-1197.
    潘毅,王晓玥,许浒,等. 脉冲型地震动作用下尼泊尔砖木遗产建筑易损性分析[J]. 西南交通大学学报,2017,52(6): 1156-1163.

    PAN Yi, WANG Xiaoyue, XU Hu, et al. Seismic fragility analysis of Nepalese brick-timber heritage structures under near-fault pulse-like ground motions[J]. Journal of Southwest Jiaotong University, 2017, 52(6): 1156-1163.
    BAKER J W. Quantitative classification of near-fault ground motions using wavelet analysis[J]. Bulletin of the Seismological Society of America, 2007, 97(5): 1486-1501. doi: 10.1785/0120060255
    ZHAI C, CHANG Z, LI S, et al. Quantitative identification of near-fault pulse-like ground motions based on energy[J]. Bulletin of the Seismological Society of America, 2013, 103(5): 2591-2603. doi: 10.1785/0120120320
    常志旺. 近场脉冲型地震动的量化识别及特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2014
    MAVROEIDIS G P. A mathematical representation of near-fault ground motions[J]. Bulletin of the Seismological Society of America, 2003, 93(3): 1099-1131. doi: 10.1785/0120020100
    BRAY J D, RODRIGUEZ-MAREK A. Characterization of forward-directivity ground motions in the near-fault region[J]. Soil Dynamics & Earthquake Engineering, 2004, 24(11): 815-828.
    STEWART J P, CHIOU S J, BRAY J D, et al. Ground motion evaluation procedures for performance based design[J]. Soil Dynamics & Earthquake Engineering, 2002, 22(9): 765-772.
    IERVOLINO I, CORNELL C A. Probability of occurrence of velocity pulses in near-source ground motions[J]. Bulletin of the Seismological Society of America, 2008, 98(5): 2262-2277. doi: 10.1785/0120080033
    CHANG Z, SUN X, ZHAI C, et al. An improved energy-based approach for selecting pulse-like ground motions[J]. Earthquake Engineering & Structural Dynamics, 2016, 45(14): 2405-2411.
    DICKINSON B W, GAVIN H P. Parametric statistical generalization of uniform-hazard earthquake ground motions[J]. Journal of Structural Engineering, 2011, 137(3): 410-422. doi: 10.1061/(ASCE)ST.1943-541X.0000330
    MENEGOTTO M. Method of analysis for cyclically loaded RC plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending[C]// Resistance and Ultimate Deformability of Structures Acted on by Well Defined Repeated Loads. Lisbon: IABSE, 1973: 15-22
    KENT D C, PARK R. Flexural members with confined concrete[J]. Journal of the Structural Division, 1971, 97(7): 1969-1990.
    MUTHUKUMAR S. A contact element approach with hysteresis damping for the analysis and design of pounding in bridges[D]. Atlanta: Georgia Institute of Technology, 2003
    李建中,宋晓东,范立础. 桥梁高墩位移延性能力的探讨[J]. 地震工程与工程振动,2005(1): 43-48. doi: 10.3969/j.issn.1000-1301.2005.01.008

    LI Jianzhong, SONG Xiaodong, FAN Lichu. Investigation for displacement ductility capacity of tall piers[J]. Journal of Earthquake Engineering and Engineering Vibration, 2005(1): 43-48. doi: 10.3969/j.issn.1000-1301.2005.01.008
    李立峰,黄佳梅,吴文朋,等. 基于IDA的高墩大跨桥梁抗震性能评估[J]. 地震工程与工程振动,2012,32(1): 68-77.

    LI Lifeng, HUANG Jiamei, WU Wenpeng, et al. Research on the seismic performance of bridge with heath piers and long spans using increment dynamic analysis[J]. Journal of Earthquake Engineering and Engineering Vibration, 2012, 32(1): 68-77.
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  593
  • HTML全文浏览量:  246
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-29
  • 修回日期:  2017-12-13
  • 网络出版日期:  2019-02-23
  • 刊出日期:  2019-10-01

目录

    /

    返回文章
    返回