• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

风、浪、流荷载组合对跨海桥梁动力响应的影响

房忱 李永乐 向活跃 张景钰

房忱, 李永乐, 向活跃, 张景钰. 风、浪、流荷载组合对跨海桥梁动力响应的影响[J]. 西南交通大学学报, 2019, 54(5): 908-914, 922. doi: 10.3969/j.issn.0258-2724.20170716
引用本文: 房忱, 李永乐, 向活跃, 张景钰. 风、浪、流荷载组合对跨海桥梁动力响应的影响[J]. 西南交通大学学报, 2019, 54(5): 908-914, 922. doi: 10.3969/j.issn.0258-2724.20170716
FANG Chen, LI Yongle, XIANG Huoyue, ZHANG Jingyu. Dynamic Response Influences of Combination Loads of Wind, Wave, and Current on Sea-Crossing Bridges[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 908-914, 922. doi: 10.3969/j.issn.0258-2724.20170716
Citation: FANG Chen, LI Yongle, XIANG Huoyue, ZHANG Jingyu. Dynamic Response Influences of Combination Loads of Wind, Wave, and Current on Sea-Crossing Bridges[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 908-914, 922. doi: 10.3969/j.issn.0258-2724.20170716

风、浪、流荷载组合对跨海桥梁动力响应的影响

doi: 10.3969/j.issn.0258-2724.20170716
基金项目: 国家自然科学基金(51525804);四川省青年科技创新研究团队(2015TD0004);中国工程院重点咨询研究项目(2016-XZ-13)
详细信息
    作者简介:

    房忱(1991—),男,博士研究生,研究方向为桥梁风浪耦合动力响应,E-mail:1454457971@qq.com

    通讯作者:

    李永乐(1972—),男,教授,研究方向为大跨桥梁风致振动及车桥耦合振动,E-mail:lele@swjtu.edu.cn

  • 中图分类号: U443.22;U443.15

Dynamic Response Influences of Combination Loads of Wind, Wave, and Current on Sea-Crossing Bridges

  • 摘要: 为研究跨海桥梁所受风、浪、流环境荷载及其组合影响,采用国际结构安全性联合委员会(JCSS)提出的组合模型将风浪流荷载进行组合,并考虑了风浪流要素之间的相关性,对于风浪相关性采用了耿贝尔联合概率模型,并通过风海流实现了水流与风场的联合. 以某跨海大桥为工程背景,分析了不同荷载组合对主梁动力响应的影响及其机理,并讨论了荷载组合中参与荷载时段和不同波浪场对计算结果的影响. 研究结果表明:风、浪、流荷载对主梁位移响应影响较大,以风为主要荷载的JCSS组合比以波浪和水流为主要荷载的JCSS组合跨中位移响应偏大20%~30%;随机波浪和桥梁横向基阶模态对跨中横向响应贡献显著;主梁不同位置的位移响应受同一环境要素的影响程度不同,主跨跨中响应主要受风荷载的影响,塔梁结合处主梁响应主要受波浪荷载的影响;波浪场采用规则波模拟会低估主梁跨中位移响应.

     

  • 图 1  风、浪、流荷载

    Figure 1.  Wind,wave,and current loads

    图 2  桥梁构造

    Figure 2.  Bridge construction

    图 3  全桥有限元模型

    Figure 3.  Finite element model of full-bridge

    图 4  随机风、浪场功率谱对比

    Figure 4.  Comparison of power spectrum of random wind field and wave field

    图 5  不同组合跨中位移

    Figure 5.  Displacement at the middle of the span on different combinations

    图 6  桥梁跨中横向位移功率谱分析

    Figure 6.  Power spectrum analysis of lateral displacement at the middle of the span

    图 7  桥梁跨中横向位移对比

    Figure 7.  Comparison of lateral displacement at the middle of the span

    图 8  桥梁塔梁结合处横向位移对比

    Figure 8.  Comparison of lateral displacement at the joint of the tower and girder

    图 9  不同波浪场下跨中横向位移对比

    Figure 9.  Comparison of lateral displacement at the middle of the span at different wave fields

    表  1  设计基准期内极值风浪流组合

    Table  1.   Combination of extreme wind,wave, and current during design reference period

    工况时间/a
    1 N Ti Ti
    2 Ti N Ti
    3 Ti Ti N
    下载: 导出CSV

    表  2  极值风浪流设计参数

    Table  2.   Design parameters of extreme wind,wave,and current

    工况V10/
    (m•s−1
    Vb/
    (m•s−1
    Hs/mvu/
    (m•s−1
    vt/
    (m•s−1
    v/
    (m•s−1
    143.9354.917.850.751.141.89
    2(7)30.1237.6511.450.751.141.89
    330.1237.657.851.101.142.25
    443.9354.916.750.651.141.79
    525.8932.3611.450.651.141.79
    625.8932.366.751.101.142.25
    下载: 导出CSV
  • 杨进先,胡勇. 跨海大桥桥渡设计关键技术探讨[J]. 桥梁建设,2010,40(5): 60-63.

    YANG Jinxian, HU Yong. Discussion on key technology of bridge crossing design of cross sea bridge[J]. Bridge Construction, 2010, 40(5): 60-63.
    房忱,李永乐,向活跃. 波浪作用下跨海大桥列车走行性研究[J]. 西南交通大学学报,2017,52(6): 1068-1074. doi: 10.3969/j.issn.0258-2724.2017.06.005

    FANG Chen, LI Yongle, XIANG Huoyue. Study of train running performance under wave load for cross-sea bridge[J]. Journal of Southwest Jiaotong University, 2017, 52(6): 1068-1074. doi: 10.3969/j.issn.0258-2724.2017.06.005
    房忱,李永乐,秦顺全,等. 中、美、英规范关于跨海桥梁桩基波浪力的对比[J]. 桥梁建设,2016,46(6): 94-99.

    FANG Chen, LI Yongle, QIN Shunquan, et al. Comparison of wave forces of pile foundations for sea-crossing bridges provided in Chinese,American and British codes[J]. Bridge Construction, 2016, 46(6): 94-99.
    陈小波. 近海风机结构体系环境荷载及动力响应研究[D]. 大连: 大连理工大学, 2011.
    ZHU H J, ZHAO H, YAO J, et al. Numerical study on vortex-induced vibration responses of a circular cylinder attached by a free-to-rotate dartlike overlay[J]. Ocean Engineering, 2016, 112: 195-210.
    曹猛猛. 风浪流联合作用下浮动式发电平台的水动力特性及稳定性和强度分析[D]. 合肥: 合肥工业大学, 2016.
    李国亮,刘钊,李学民,等. 杭州湾大桥南岸超长施工栈桥设计中风、浪、流荷载的确定[J]. 公路交通科技,2007,24(1): 100-103. doi: 10.3969/j.issn.1002-0268.2007.01.024

    LI Guoliang, LIU Zhao, LI Xuemin, et al. Determination of design loads of wind,wave and flow for the construction trestle of Hangzhou Bay Bridge[J]. Journal of Highway and Transportation Research and Development, 2007, 24(1): 100-103. doi: 10.3969/j.issn.1002-0268.2007.01.024
    王子健,武黎明,肖盛燮. 考虑风浪流作用下的深水桥墩动力响应分析[J]. 科学技术与工程,2014,14(19): 293-297. doi: 10.3969/j.issn.1671-1815.2014.19.057

    WANG Zijian, WU Liming, XIAO Shengxie. Dynamic response analysis of deep-water pier under effect of wind flow[J]. Science Technology and Engineering, 2014, 14(19): 293-297. doi: 10.3969/j.issn.1671-1815.2014.19.057
    GUO A, LIU J, CHEN W, et al. Experimental study on the dynamic responses of a freestanding bridge tower subjected to coupled actions of wind and wave loads[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 159: 36-47. doi: 10.1016/j.jweia.2016.10.003
    WANG W, GAO Z, LI X, et al. Model test and numerical analysis of a multi-pile offshore wind turbine under seismic,wind,wave,and current loads[J]. Journal of Offshore Mechanics and Arctic Engineering, 2017, 139(3): 1016-1034.
    MORATO A, SRIRAMULA S, KRISHNAN N, et al. Ultimate loads and response analysis of a monopile supported offshore wind turbine using fully coupled simulation[J]. Renewable Energy, 2017, 101: 126-143. doi: 10.1016/j.renene.2016.08.056
    金伟良. 工程荷载组合理论与应用[M]. 北京: 机械工业出版社, 2006: 110-113.
    中交公路规划设计院. 公路桥梁抗风设计规范: JTG/T D60-01——2004[S]. 北京: 人民交通出版社, 2004.
    LI Y, LIAO H, QIANG S. Simplifying the simulation of stochastic wind velocity fields for long cable-stayed bridges[J]. Computers & structures, 2004, 82(20): 1591-1598.
    LI Y, XIANG H, WANG B, et al. Dynamic analysis of wind-vehicle-bridge coupling system during the meeting of two trains[J]. Advances in Structural Engineering, 2013, 16(10): 1663-1670. doi: 10.1260/1369-4332.16.10.1663
    WEI K, ARWADE S R, MYERS A T. Incremental wind-wave analysis of the structural capacity of offshore wind turbine support structures under extreme loading[J]. Engineering Structures, 2014, 79: 58-69. doi: 10.1016/j.engstruct.2014.08.010
    中交第一航务工程勘探设计院有限公司. 港口与航道水文规范: JTS 145——2015[S]. 北京: 人民交通出版社, 2015.
    LIU S X, LI Y C, LI G W. Wave current forces on the pile group of base foundation for the East Sea Bridge,China[J]. Journal of Hydrodynamics, 2007, 19(6): 661-670. doi: 10.1016/S1001-6058(08)60001-3
    中交第一航务工程勘探设计院有限公司. 港口工程荷载规范: JTS144-1——2010 [S]. 北京: 人民交通出版社, 2010.
    周道成,段忠东. 耿贝尔逻辑模型在极值风速和有效波高联合概率分布中的应用[J]. 海洋工程,2003,21(2): 45-51. doi: 10.3969/j.issn.1005-9865.2003.02.008

    ZHOU Daocheng, DUAN Zhongdong. The gumbel-logistic model for joint probability distribution of extreme-value wind speeds and effective wave heights[J]. The Ocean Engineering, 2003, 21(2): 45-51. doi: 10.3969/j.issn.1005-9865.2003.02.008
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  576
  • HTML全文浏览量:  387
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-27
  • 修回日期:  2018-07-19
  • 网络出版日期:  2019-09-04
  • 刊出日期:  2019-10-01

目录

    /

    返回文章
    返回