• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

考虑SSI效应的输电塔-线体系风振响应简化分析

汪之松 刘兴龙 武彦君 江鹏 李正良

汪之松, 刘兴龙, 武彦君, 江鹏, 李正良. 考虑SSI效应的输电塔-线体系风振响应简化分析[J]. 西南交通大学学报, 2019, 54(2): 319-327. doi: 10.3969/j.issn.0258-2724.20170715
引用本文: 汪之松, 刘兴龙, 武彦君, 江鹏, 李正良. 考虑SSI效应的输电塔-线体系风振响应简化分析[J]. 西南交通大学学报, 2019, 54(2): 319-327. doi: 10.3969/j.issn.0258-2724.20170715
WANG Zhisong, LIU Xinglong, WU yanjun, JIANG Peng, LI Zhengliang. Simplified Analysis of Wind-Induced Response of Transmission Tower-Line System Considering SSI Effect[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 319-327. doi: 10.3969/j.issn.0258-2724.20170715
Citation: WANG Zhisong, LIU Xinglong, WU yanjun, JIANG Peng, LI Zhengliang. Simplified Analysis of Wind-Induced Response of Transmission Tower-Line System Considering SSI Effect[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 319-327. doi: 10.3969/j.issn.0258-2724.20170715

考虑SSI效应的输电塔-线体系风振响应简化分析

doi: 10.3969/j.issn.0258-2724.20170715
基金项目: 国家自然科学基金资助项目(51208537)
详细信息
    作者简介:

    汪之松(1980—),男,副教授,研究方向为结构风工程等,E-mail:wangzhisong@cqu.edu.cn

  • 中图分类号: TU279.7+44

Simplified Analysis of Wind-Induced Response of Transmission Tower-Line System Considering SSI Effect

  • 摘要: 输电塔的分析设计通常按基础固支来处理,然而多数情况下地基并不是刚性的. 为了考虑弹性地基对输电塔风振响应的影响,建立了考虑土与结构相互作用(soil-structure interaction,SSI)的输电塔-线体系简化计算模型,并推导了风振响应动力方程. 基于提出的简化计算模型,选取工程中某特高压输电塔-线体系,编写MATLAB程序进行了结构系统的动力特性分析和风振响应时程分析,并选取了3种不同参数的地基土对输电塔的风振响应进行了对比分析. 研究结果表明:考虑SSI效应后,单塔的位移均方根值增大约20%,加速度均方根值减小约14%,基底剪力及基底弯矩最大值分别减小约7%、12%;考虑塔线耦联和SSI效应后,与仅考虑SSI效应的单塔相比,输电塔的位移响应有所增大,但加速度响应变化很小;随着地基土刚度减小,SSI效应的影响越明显,表明软土地基下输电塔的风振响应分析不能忽略SSI效应.

     

  • 图 1  塔线体系简化模型

    Figure 1.  Simplified model of tower line system

    图 2  考虑SSI效应的塔线体系简化计算模型

    Figure 2.  Simplified calculation model of the tower line system considering SSI effect

    图 3  直线塔平面

    Figure 3.  Plan figure of the tangent tower

    图 4  顶点风速时程

    Figure 4.  Wind speed time history of vertex

    图 5  顶点风速模拟功率谱与目标功率谱的比较

    Figure 5.  Comparison of the power spectrum between the sinulation result and target of vertex

    图 6  输电塔顶点位移时程比较

    Figure 6.  Comparison of vertex displacement time history

    图 7  输电塔顶点加速度时程比较

    Figure 7.  Comparison of vertex acceleration time history

    图 8  不同剪切波速下塔顶位移均方根值

    Figure 8.  RMS displacement velue at the vertex under different shear wave velocity

    图 9  不同剪切波速下塔顶加速度均方根值

    Figure 9.  RMS acceleration value at the vertex under different shear wave velocity

    表  1  直线塔计算参数

    Table  1.   Calculate parameter of the tangent tower

    点号高度/m挡风面积/m2质量/kg
    19.537.8729 198
    31.525.0120 253
    40.516.8010 628
    48.514.158 948
    55.011.797 753
    64.517.0617 897
    73.013.077 219
    81.512.229 512
    90.613.4313 453
    99.29.824 530
    108.012.5916 842
    下载: 导出CSV

    表  2  前3阶自振频率

    Table  2.   First three natural frequencies

    阶次 单塔 单塔+地基 塔线 塔线+地基
    第1阶 0.842 1 0.781 4 0.842 8 0.782 1
    第2阶 2.570 5 2.297 0 2.570 6 2.297 2
    第3阶 4.087 0 4.067 0 4.087 0 4.067 3
    下载: 导出CSV

    表  3  塔顶位移值比较

    Table  3.   Comparison of the vertex displacement value

    体系类型Xmax/m差值/%XRMS/m差值/%
    单塔0.087 90.052 4
    单塔地基0.093 46.260.063 120.42
    塔线0.107 422.180.067 328.44
    塔线地基0.109 524.570.078 149.05
    下载: 导出CSV

    表  4  塔顶加速度值比较

    Table  4.   Comparison of the vertex acceleration value

    体系类型 amax/(m•s–2差值/% aRMS/(m•s–2差值/%
    单塔0.925 90.271 9
    单塔地基0.897 0–3.120.233 9–13.98
    塔线0.932 50.710.272 40.18
    塔线地基0.897 5–3.070.233 3–14.20
    下载: 导出CSV

    表  5  考虑SSI效应后基底剪力与基底弯矩值

    Table  5.   Variation of base shear and base bending moment after considering the SSI effect

    类型剪力/N弯矩/(N•m)
    最大值均方根值最大值均方根值
    基础固支234 860151 00014 318 0008 902 200
    考虑SSI效应217 970150 69012 475 0008 871 200
    差值/%–7.19–0.21–12.87–0.35
    下载: 导出CSV

    表  6  不同地基土的参数

    Table  6.   Parameters of different foundation soil

    土的类别泊松比密度/(kg•m–3剪切波速/(m•s–1CS/(N•s•m–1CR/( × 109 N•s•m–1KS/(N•m–1KR/(N•m–1
    软土0.491 8001005.48 × 1071.419.54 × 1089.41 × 1010
    中硬土0.481 9003001.73 × 1084.389.00 × 1098.77 × 1011
    硬土0.332 4005003.31 × 1087.162.87 × 10102.39 × 1012
    下载: 导出CSV

    表  7  单塔塔顶位移及加速度比较

    Table  7.   Comparison of displacement and acceleration at the vertex of the tower

    地基类型Xmax/m差值/%XRMS/m差值/%amax/(m•s–2差值/%aRMS/m差值/%
    刚性地基0.087 90.052 40.925 90.271 9
    软土地基0.093 46.260.063 120.420.897 0–3.120.233 9–13.98
    中硬土地基0.088 81.020.053 52.100.916 6–1.000.269 8–0.77
    硬土地基0.088 00.110.052 80.760.954 63.100.271 3–0.22
    下载: 导出CSV

    表  8  塔线体系塔顶位移及加速度比较

    Table  8.   Comparison of displacement and acceleration at the vertex of the tower line system

    地基类型Xmax/m差值/%XRMS/m差值/%amax/(m•s–2差值/%aRMS/m差值/%
    刚性地基0.107 40.067 30.932 50.272 4
    软土地基0.109 51.960.078 116.050.897 5–3.750.233 3–14.35
    中硬土地基0.108 61.120.068 51.780.915 9–1.780.269 4–1.10
    硬土地基0.107 50.090.067 70.590.943 61.190.271 6–0.29
    下载: 导出CSV
  • 李宏男,徐静. 考虑桩-土-结构动力相互作用的输电塔线体系简化抗震计算模型[J]. 岩土工程学报,2009,31(11): 1763-1767. doi: 10.3321/j.issn:1000-4548.2009.11.019

    LI Hongnan, XU Jing. Simplified aseismic calculation model for transmission tower-line system considering pile-soil dynamic interaction[J]. Journal of Geotechnical Engineering, 2009, 31(11): 1763-1767. doi: 10.3321/j.issn:1000-4548.2009.11.019
    刘海卿, 杜岩, 于春艳. 考虑土-结构相互作用锥形管风电塔架地震响应分析[J]. 建筑结构, 2010, 40(增刊): 116-118

    LIU Haiqing, DU yan, YU Chunyan. Considering soil-structure interaction tapered pipe wind power tower earthquake response analysis[J]. Building Structures, 2010, 40 (S): 116-118
    EBRAHIM N, SEYED M Z. Seismic control of irregular multistory buildings using active tendons[J]. Soil Dynamics and Earthquake Engineering, 2016, 89: 100-115. doi: 10.1016/j.soildyn.2016.07.005
    ANOOSHIRAVAN F, SAEED S. Ant colony optimization of tuned mass dampers for earthquake oscillations of high-rise structures including soil-structure interaction[J]. Soil Dynamics and Earthquake Engineering, 2013, 51: 14-26. doi: 10.1016/j.soildyn.2013.04.002
    陈镕,薛松涛,王远功,等. 土-结构相互作用对结构风振响应的影响[J]. 岩石力学与工程学报,2003,22(2): 309-315. doi: 10.3321/j.issn:1000-6915.2003.02.028

    CHEN Rong, XUE Songtao, WANG Yuangong, et al. Effect of soil-structure interaction on the response of structure to wind-induced vibration[J]. Journal of Rock Mechanics and Engineering, 2003, 22(2): 309-315. doi: 10.3321/j.issn:1000-6915.2003.02.028
    LIU M Y, CHIANG W L, HWANG J H, et al. Wind-induced vibration of high-rise building with tuned mass damper including soil-structure interaction[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96: 1092-1102. doi: 10.1016/j.jweia.2007.06.034
    ILARIA V, DIANA S, CLAUDIO T. The effect of soil-foundation-structure interaction on the wind-induced response of tall building[J]. Engineering Structures, 2014, 79: 117-130. doi: 10.1016/j.engstruct.2014.08.002
    刘春城,龙祖梁,景欢,等. 考虑桩-土-结构相互作用的输电塔风振响应分析[J]. 东北电力大学学报,2016,36(6): 84-90. doi: 10.3969/j.issn.1005-2992.2016.06.016

    LIU Chuncheng, LONG Zuliang, JING Huan, et al. Wind vibration response analysis of transmission tower in consideration of the pile-soil-structure interaction[J]. Journal of Northeast Dianli University, 2016, 36(6): 84-90. doi: 10.3969/j.issn.1005-2992.2016.06.016
    JENDOUBI A, LEGERON F. Effect of the dynamic soil-structure interaction on rigid transmission line towers subjected to wind and impulse loads[J]. Electrical Transmission and Substation Structures, 2012, 27(6): 250-261.
    张琳琳,谢强,李杰. 输电线路多塔耦联体系的风致动力响应分析[J]. 防灾减灾工程学报,2006,26(3): 261-267.

    ZHANG Linlin, XIE Qiang, LI Jie. Dynamic wind-induced response analysis of multi-tower-line coupled system of transmission line[J]. Journal of Disaster Prevention and Mitigation Engineering, 2006, 26(3): 261-267.
    李宏男,王前言. 大跨越输电塔体系的动力特性[J]. 土木工程学报,1997,30(5): 28-36. doi: 10.3321/j.issn:1000-131X.1997.05.004

    LI Hongnan, WANG Qianyan. Dynamic characteristics of long-span transmission lines and their supporting towers[J]. Civil Engineering Journal, 1997, 30(5): 28-36. doi: 10.3321/j.issn:1000-131X.1997.05.004
    梁枢果,朱继华,王力争. 大跨越输电塔-线体系动力特性分析[J]. 地震工程学报,2003,23(6): 63-69.

    LIANG Suguo, ZHU Jihua, WANG Lizheng. Analysis of dynamic characters of electrical transmission tower-line system with a big span[J]. Earthquake Engineering and Engineering Vibration, 2003, 23(6): 63-69.
    瞿伟廉,殷惠君,陈波. 输电线路动力分析的多质点模型研究[J]. 华中科技大学学报(城市科学版),2003,20(2): 1-5. doi: 10.3969/j.issn.2095-0985.2003.02.001

    QU Weilian, YIN Huijun, CHEN Bo. Study on multi-degree-of-freedom model of transmission tower-line system[J]. Journal of Huazhong University of Science and Technology (Urban Science Edition), 2003, 20(2): 1-5. doi: 10.3969/j.issn.2095-0985.2003.02.001
    梁峰,李黎,尹鹏. 大跨越输电塔-线体系数值分析模型的研究[J]. 振动与冲击,2007,26(2): 61-65. doi: 10.3969/j.issn.1000-3835.2007.02.016

    LIANG Feng, LI Li, YIN Peng. Investigation on numerical model of electrical transmisson tower-line systerm with a big span[J]. Vibration and Shock, 2007, 26(2): 61-65. doi: 10.3969/j.issn.1000-3835.2007.02.016
    WOLF J P. 土-结构动力相互作用[M]. 昊世明, 唐有职, 译. 北京: 地震工程出版社, 1989: 112-118
    NOVAK M, EL HIFANAWY L. Structure response to wind with soil-structure interaction[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1988, 28: 329-338. doi: 10.1016/0167-6105(88)90129-8
  • 加载中
图(9) / 表(8)
计量
  • 文章访问数:  505
  • HTML全文浏览量:  310
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-26
  • 修回日期:  2017-12-19
  • 网络出版日期:  2018-10-08
  • 刊出日期:  2019-04-01

目录

    /

    返回文章
    返回