Semi-analytical Analysis of One-Dimensional Nonlinear Consolidation of Multi-layered Structured Soft Clay
-
摘要: 为了研究变荷载作用下土体结构性对成层软土固结性状的影响,基于结构性软土压缩性和渗透性的非线性变化规律,以及结构屈服应力随土体深度变化等特征,对结构性软土非线性固结问题进行了分析. 首先采用三折线压缩模型、e-lg kv渗透模型,详细分析了结构性软土在不同排水工况下的固结过程;其次,利用半解析法,建立一维固结方程,并编制程序进行求解,与目前已有的非线性固结结果进行了对比分析,验证了本文计算方法的可靠性;最后以某四层软土地基为工程背景,研究了变荷载、结构性等因素对固结性状的影响. 研究结果表明:成层结构性软土一维非线性固结过程中,当最终荷载相同,加荷速率不同时,固结前期,按应力定义的固结度大于按沉降定义的固结度,固结后期则相反;当加荷速率相同,最终荷载不同时,按应力定义和按沉降定义的固结度在固结前期均随着最终荷载的增大而减小,而在固结后期,随着最终荷载的增大而增大;考虑结构性时,按应力定义的固结度明显大于不考虑结构性的计算值,固结前期相差较大,随着固结的进行,差值逐渐减小.Abstract: To study the impact of structural properties on the consolidation behavior of multi-layered soft clay under time-dependent loading, the problem of nonlinear consolidation of structured soft clay was addressed by analyzing the nonlinear variable permeability and compressibility of structured soft clay and the variation of the yield stress with depth. First, the consolidation process in different drainage situations was analyzed in detail using the structured soft clay trilinear compression model and e-lg kv permeability model. Then, one-dimensional consolidation equations were established by semi-analytical method. A calculation procedure was developed to solve the problem, and the effectiveness of the proposed method was verified by comparison with the existing nonlinear consolidation results. Finally, in the engineering background of a four-layer soft clay ground, influences of time-dependent loading and structural properties on the consolidation behavior of multi-layered soft clay were investigated. The results show that when the ultimate load is fixed while loading rates are varying, the degree of consolidation defined in terms of effective stress (Up) is larger than that defined in terms of settlement (Us) at the early stage, but the opposite will occur at the late stage. On the other hand, when the loading rate is fixed but the ultimate loads are different, with the ultimate load increasing, the values of Us and Up decrease at the early stage but increse at the late stage. At the early stage of cosolidation, the Up obtained by the nonlinear consolidation analysis considering structural properties is significantly larger than that without considering structural properties, but the discrepancy decreases gradually as the consolidation proceeds.
-
城市轨道交通网络客流分配的关键在于确定乘客的有效出行路径及所乘列车,现有乘客刷卡数据仅记录进、出站点和时刻信息,无法准确获知客流在线网中的分布情况. 既有客流分配研究主要集中于基于路径的集计分配和乘客出行时空路径推算.
基于路径的集计分配方法需首先构建包含多效用因素的广义费用函数[1-2],随后使用线性规划[1]求解路径配流结果或Logit 衍生模型[2-3]刻画乘客出行路径选择行为,以得到客流分配结果. 基于路径的集计分配方法无法保证所分配路径上存在有效出行服务,易导致乘客出行结果估计的偏差. 为保证客流分配的有效性,需进行针对乘客-路径-列车匹配的时空路径推算. 乘客出行时空路径推算使用自动客票采集系统(AFC)数据和列车时刻表数据[4-5],估计乘客出行路径及所乘列车,流程为网络出行时间参数估计、乘客出行前后路径选择[6]、采用列车运行仿真[7]或匹配概率模型[8]确定所乘列车,以得到乘客的有效出行结果.
综上,有效合理的客流推算依赖于准确推算乘客的出行时空路径,需完成可行物理路径集的确定和乘客与列车的匹配,以确保出行路径的物理可达性和动态服务的有效性. 本文基于AFC 数据和列车时刻表数据,以乘客时空路径推算方法研究城市轨道交通网络客流分配问题. 在此基础上,设计开发基于C# 语言的客流推算系统.
1. 网络客流推算方法
网络客流推算方法包括乘客出行路径的生成和基于乘客出行路径的可行列车搜索与匹配2部分:第1部分包括出行时间参数的估计和可行路径集的确定;第2部分首先进行乘客与出行路径集的匹配,随后在相应出行路径上完成可行列车集的搜索与确定.
此外,乘客有效出行结果中可能存在可行路径或可行列车不唯一的情况. 此时,需要先完成有效路径的选择优先级排序,然后,确定可行列车的检验次序,最后,以路径优先级及路径所含各可行列车的检验次序完成列车运行过程推演,从而获得各个乘客唯一的有效出行路径及列车,即进行“有效路径及列车调整”. 客流推算流程如图1所示.
本文所使用的单个乘客f 的AFC 数据包括进站站点Of、出站站点Df、进站刷卡时刻tf,et、出站刷卡时刻tf,ex,时刻表数据内容包括各列车途经站点及到发时刻. 为便于推算,提出以下假设:
1) 网络中出行的乘客按路径换乘次数和出行时间的综合排序选择可行路径.
2) 忽略乘客在车站中的微观行为,乘客以刷卡进站时刻的先后顺序上车,并受到列车载客容量的限制.
3) 各线均开行站站停的单一交路列车.
为便于后续描述,统一将可行路径p以换乘站拆分为路段集Cp(非换乘路径不拆分). 网络客流推算的核心在于生成单个乘客f 在其第n个可行路段cn∈Cp的可行列车集Rcn,f. 其匹配条件为:所匹配的可行列车r在cn起点cn,o的出站时刻dcn,o,r应晚于乘客f 进站时刻tf,et,且在终点cn,d的到达时刻acn,d,r应早于乘客出站时刻tf,ex(算法1),如图2所示.
1.1 乘客出行时间参数估计
城市轨道交通系统中乘客出行时间包括起点站的进站时间、起点站的站台等待时间、在车时间、换乘站的换乘时间、换乘站的站台等待时间和终点站的出站时间[9]. 其中,在车时间可以由列车时刻表数据直接得到,其余时间无法直接从AFC数据中得到,需用可行路径单一的本线进出的和换乘方向明确的一次换乘的乘客样本进行估计. 在给定AFC数据、列车时刻表数据及线网数据后,依次估算各车站在高峰时段(t=1)和平峰时段(t=0)的进站时间均值μac,t和方差σ2ac,t、换乘站换乘时间均值μtr,t和方差σ2tr,t、出站时间均值μeg,t和方差σ2eg,t. 结合列车时刻表可得全网各OD的出行时间均值μod,t,用于生成可行路径集.
1.1.1 进出站时间参数估计
对于本线进、出乘客,在进、出站刷卡时间范围内仅有唯一可行列车的情况下,可以准确计算乘客的进、出站时间. 本线进、出乘客f在起点站的进站时间、终点站的出站时间可由其本线出行路径pb上唯一可行列车的出站时刻、到站时刻及乘客的进、出站刷卡时刻计算得到,如式(1)、(2)所示. 对所得进、出站时间样本集去除极端异常值后,计算样本均值及方差,以此分别作为对应时段t在相应起点站O的进站时间和终点站D的出站时间均值μac,t,O与μeg,t,D.
tac,f,Of=dOf,r−tf,et,|Rpb,f|=1, (1) teg,f,Df=tf,ex−aDf,r,|Rpb,f|=1, (2) 式中:tac,f,Of、teg,f,Df为本线进出乘客f分别在站点Of的进站时间、站点Df的出站时间;dOf,r和aDf,r分别为列车r在站点Of和站点Df的发车时刻和到站时刻;|Rpb,f|=1表示在本线路径pb上的可行列车唯一.
1.1.2 换乘时间参数估计
该时间参数可由一次换乘乘客进行估计. 对此,可以换乘站T为中心,整合其周围车站集(S1~S4),如图3所示,构建一次换乘乘客的筛选OD表,并以该表筛选得到在换乘站的换乘时间未确定的一次换乘乘客. 因此,其换乘时间tT,f可由对应时段进站站点的进站时间均值μac,t,Of、出站站点的出站时间均值μeg,t,Df、行程时间tf和首路段n = 1至末路段n = 2列车运行时间和∑2n=1ˉtcn得到,如式(3)所示,其中,ˉtcn为路段cn上列车运行时间均值. 对所得换乘站T在换乘方向di的换乘时间样本集去除极端异常值后,计算样本均值μT,t,di,即为该时段换乘站T在换乘方向di的换乘时间参数估计值.
tT,f=tf−∑2n=1ˉtcn−μac,t,Of−μeg,t,Df, (3) 式中:tT,f为乘客f在换乘站T的换乘时间.
1.2 乘客可行物理路径集生成
根据所估计的出行时间参数,乘客可行路径集生成的目标为获得各OD对满足时间阈值约束的可行物理路径集P,如式(4)~(6)所示. 先使用Dijkstra算法得到全网各OD对在高峰时段和平峰时段的最短路径集ˉP,随后,使用图4所示的基于插点的可行路径搜索算法(算法2)得到所有OD对的可行路径集合P,其包含了不超过各OD对最短路出行时间 α 倍的所有可行路径,如式(7)所示约束.
P={Pt|t∈{0,1}}, (4) Pt={PO,D,t|O,D∈S}, (5) PO,D,t={pO,D,t,1,pO,D,t,2,⋯,pO,D,t,j,⋯}, (6) x(pO,D,t,j)⩽αx(ˉpO,D,t), ∀pO,D,t,j∈PO,D,t, (7) 式中:Pt为时段t各OD对的可行路径集;S为线网车站集;PO,D,t为时段t单个OD对的可行路径集;pO,D,t,j为时段t单个OD对的第j条可行路径; x(·)为路径的出行时间.
算法2的原理为:对于单个OD对而言,其次短路中存在不属于该OD对最短路的节点,因而可对不在该OD对最短路径上的节点集nOD进行遍历,并将起点O到节点V (V∈nOD)的最短路ˉpO,V,t与节点V到终点D的最短路ˉpV,D,t进行组合,若ˉpO,V,t与ˉpV,D,t无回头路关系,即ˉpO,V,t与ˉpV,D,t上的车站序列不存在重叠(ˉpO,V,t∩ˉpV,D,t = Ø),且满足时间阈值约束,则生成组合路径pO,V,D,t,最后删除重复路径,从而得到该OD对的可行路径集.
1.3 乘客可行列车集确定
乘客可行列车集确定即进行乘客与列车的匹配,生成乘客f在相应可行路径集POf,Df,t中各路径pi上的可行列车集Rpi,f,如式(8). 基于所定义的变量及相关参数,乘客可行列车集匹配算法(算法3)如图5所示. 其原理为:1) 根据单个乘客f的进、出站站点匹配可行路径集POf,Df,t. 2) 对于单条可行路径pi∈POf,Df,t,若为非换乘路径,则直接使用算法1得到路径pi上的可行列车集Rpi,f;若为换乘路径,则对pi进行分割,生成路段集Cpi. 3) 对各个路段cn∈Cpi使用算法1得到该路段的可行列车集Rcn,f. 4) 对路径上各路段的可行列车集Rpi,f={Rcn,f|cn∈Cpi}间进行前向和后向列车接续判断,即得到换乘路径的可行列车集.
式(9)和式(10)表示乘客f 在路径pi上第ω个可行列车集Rpi,f,ω中的列车在路径起点站发车,并到达路径终点. 式(11)和式(12)表示可行列车集Rpi,f,ω中的列车在乘客进站站点的发车时刻晚于乘客的进站时刻,且在乘客出站站点的到站时刻早于乘客的出站时刻. 式(13)表示路径换乘次数大于0时,可行列车集Rpi,f,ω中前序路段cn上的列车在路径上换乘站T的到达时刻aT,pre(rcn,f,y)要早于后序路段cn+1上的列车在换乘站的发车时刻dT,pos(rcn+1,f,z).
Rpi,f={Rpi,f,1,Rpi,f,2,…,Rpi,f,ω|pi∈POf,Df,t}, (8) sOf(rpi,f,ω,u)=Of,rpi,f,ω,u∈Rpi,f,ω, (9) sDf(rpi,f,ω,u)=Df,rpi,f,ω,u∈Rpi,f,ω, (10) dOf(rpi,f,ω,u)>tf,et,rpi,f,ω,u∈Rpi,f,ω, (11) aDf(rpi,f,ω,u)<tf,ex,rpi,f,ω,u∈Rpi,f,ω, (12) aT,pre(rcn,f,y)<dT,pos(rcn+1,f,z),rcn,f,y∈Rcn,f,rcn+1,f,z∈Rcn+1,f,Rcn,f,Rcn+1,f∈Rpi,f,ω,q(pi)>0, (13) 式中:Rpi,f为乘客f在路径pi的可行列车集;rpi,f,ω,u为可行列车集Rpi,f,ω中的第u趟可行列车;rcn,f,y和rcn+1,f,z分别为可行列车集Rcn,f和Rcn+1,f中的第y和z趟可行列车,其中,cn+1为cn的后续路段;sOf(rpi,f,ω,u)、sDf(rpi,f,ω,u)分别为可行列车在乘客f进、出站点的到、发情况;dOf(rpi,f,ω,u)、aDf(rpi,f,ω,u)分别为可行列车在乘客f进、出站点的发、到时刻;q(pi)为路径pi的换乘次数.
换乘路径上可行列车集的前向和后向列车接续判断过程分别是:乘客在后序路段的可行列车在换乘站T的发车时刻dT,pos需晚于前序路段的最早一趟列车在换乘站的到达时刻aT,pre,hd;并且在前序路段的可行列车在换乘站的到达时刻aT,pre需早于后序路段最后一趟可行列车在换乘站的发车时刻dT,pos,tl. 前向判断算法(算法4)如图6所示,后向判断与其类似.
1.4 有效出行结果确定
确定乘客可行路径集和可行列车集后,根据表1所列的唯一性条件将乘客-路径-列车匹配结果分为4类,其中,类型2、3、4的乘客可行路径或可行路径中的可行列车数量不唯一,因而需要对其可行路径或可行列车进行进一步调整,最终得到乘客出行的唯一有效路径和列车.
表 1 乘客-路径-列车初始匹配结果类型Table 1. Result types of matching initial passenger–route–train类型 可行路径
情况可行列车
情况处理方式 类型 1 唯一 唯一 直接确定 类型 2 唯一 不唯一 算法 5 类型 3 不唯一 所有路径
均唯一算法 5 类型 4 不唯一 存在路径
不唯一算法 5 针对类型2、3、4类乘客采用乘客出行的有效路径及有效列车确定方法,得到其有效出行结果. 如图7所示(算法5),输入单个乘客的有效结果集Pf后,首先,结合路径pi的换乘次数q(pi)和出行时间t0(pi),使用有效路径排序算法,生成路径选择优先级排序P∗f. 因乘客通常会尽快出站,所以对各有效路径中的各可行列车Rpi,f到达乘客出站站点时刻与乘客出站时刻tf,ex的偏差进行升序排序,以确定有效路径中各可行列车的检验顺序R∗pi,f. 随后以列车时刻表完成列车运行推演,依据路径优先级排序和对应各可行列车的检验顺序,结合乘客进站时刻tf,et和站点Of与列车载客量限制Cmax,使用乘车判断算法确定乘客能否乘坐列车. 最终得到3种待定类型乘客的唯一有效路径及列车.
有效路径排序流程为:首先,对有效路径集中的路径依据换乘次数q进行非降序的分层排序,得到分层排序集Pf(q);随后,对于单个分层有效路径集pi,f∈Pf(q),若只有一条路径,则直接添加至综合排序集P∗f,若含有多条路径,则以路径的出行时间t对该层的路径进行升序排序,再添加至P∗f. 乘车判断流程为:以乘客进站时刻tf,et和站点Of得到列车r的当前载客量Cr;若Cr<Cmax,则可乘坐列车r,否则无法乘坐列车r.
2. 推算系统的架构与功能
基于C# 语言开发的系统包括数据管理与分级参数设置、出行时间参数估算、出行路径及列车的匹配与调整和结果统计与分析4个模块. 系统架构如图8所示. 其中,数据管理与分级参数设置用于输入表2所列数据;出行时间参数估计模块完成进出站时间和换乘站各换乘方向换乘时间参数估计;出行路径及列车的匹配与调整模块首先以乘客OD信息匹配可行路径集,随后对各条可行路径完成可行列车集推算,最后,进行列车运行推演,调整并确定所有乘客的有效出行结果,完成客流分配;匹配结果统计可进行各线路断面客流、列车满载率和换乘站各方向换乘客流的统计与分析.
表 2 输入的数据名称及内容Table 2. Name and content of input data数据名称 数据内容 乘客行程信息 进站时间、进站车站名、出站时间、出站车站名 时刻表信息 所属线路名、车次号、车站名、到站时刻、发车时刻 线路属性 线路名称、线路类型、是否开通、线路颜色(RGB) 车站属性 车站编号、车站名、是否为换乘站、衔接线路、衔接线路车站 满载率分级参数 分级数量、各线各区间分级标准 车站客流分级参数 线路名称、分级数量、全线分级标准、全线各站分级标准 3. 推算结果分析
系统界面包含线网显示区,分时段各车站进、出站量及换乘站各换乘方向换乘量的统计区和由数据管理、客流匹配、客流管理及结果统计构成的菜单栏区. 以下针对某市城市轨道交通部分线网2021年5月12日的数据进行网络客流推算结果进行分析.
3.1 区间断面客流对比
以该市YH线的29个区间断面客流参照值和推算系统推算值的变化趋势和差异率进行比较,如图9所示. 由图可知:参照值和推算值随区间的变化趋势相同,表明二者结果存在相似性;上行方向区间断面客流差异率为 −0.72%~4.63%,下行方向区间断面客流差异率为 −2.66%~9.25%;总体而言,上行方向绝对差异率小于5.00%,平均差异率为2.03%,下行方向绝对差异率小于10.00%,平均差异率为3.90%,表明推算系统的推算结果较稳定且贴近于参照值;此外,上下行方向断面客流差异值均较小,线路的断面客流因端部区间较小,而中部区间较大,造成差异率在端部较高,中部较低.
3.2 换乘客流统计分析
车站T3为YH线和EH线的两线换乘站,各换乘方向的早高峰(7:00—9:00)和晚高峰(17:00—19:00)换乘量如图10所示. 图中,T8、T9、YH12和YH14均为车站名. 对该换乘站直接关联的YH线和EH线早晚高峰时段换乘客流来源量前5的车站进行统计,结果如表3和表4所列. 由表可知:YH线早晚高峰时段换乘客流来源站较EH线的固定,但来源量比例的波动均较EH线大;YH线和EH线早高峰换乘客流来源量比例的标准差均小于晚高峰的,表明早高峰换乘客流来源量较稳定.
表 3 YH线早晚高峰换乘客流来源统计Table 3. Statistics on source of transfer passenger flow for YH line in morning and evening peaks% 来源
站名早高峰来源
量比例来源
站名晚高峰来源
量比例RML 22.6 BSG 22.3 ZZHCZ 21.3 LCGC 21.6 LCGC 19.7 RML 20.1 BSG 19.6 ZZHCZ 19.7 YXY 16.9 QLL 16.3 标准差 1.91 标准差 2.08 表 4 EH线早晚高峰换乘客流来源统计Table 4. Statistics on source of transfer passenger flow for EH line in morning and evening peaks% 来源
站名早高峰来源
量比例来源
站名晚高峰来源
量比例NSH 22.0 LHDL 21.8 JW 20.8 JW 21.1 SWL 20.1 LZ 20.6 LZ 18.9 LL 18.4 HNC 18.2 HHYBG 18.0 标准差 1.35 标准差 1.51 3.3 列车满载率统计分析
根据文献 [10] 所确定的列车区间满载率等级如表5所列. 以此对EH线早高峰(7:00—9:00)和晚高峰(17:00—19:00)的列车满载率进行统计分析. 结果表明,早高峰时段线路中段区间(GHT—NSH)在7:40—8:40内上行方向列车满载率高,多处于等级3和4,持续时间短且区间集中;晚高峰时段,线路中段区间(DFL—ZMT)在17:30—19:30内下行列车满载率较高,多处于等级2,持续时间长且区间分散;早高峰时段区间满载率高的列车数量多于晚高峰的. 这与线路中段位于市区,两端位于郊区,且早高峰上班时间集中、晚高峰下班时间分散的情况相对应.
表 5 列车区间满载率分级Table 5. Classification of train-section load rate% 等级 满载率范围 等级 满载率范围 等级 1 (0,50] 等级 4 (100,120] 等级 2 (50,80] 等级 5 (120,130] 等级 3 (80,100] 等级 6 (130,∞) 4. 结 论
本文以乘客时空路径推算方法对城市轨道交通网络客流分配问题进行了研究,并以实际AFC 数据和列车时刻表数据使用所开发的客流推算系统开展了案例研究. 具体结论如下:
1) 系统推算的断面客流结果稳定且与参照值差异较小,上、下行方向的平均差异率分别为2.03%和3.90%.
2) 换乘站的换乘客流主要来源为直接关联线路车站,并且早高峰时段来源量比例较晚高峰更稳定.
3) 从郊区贯穿市区的线路早高峰时段列车满载率高于晚高峰时段,持续时间较短且区间更集中.
-
表 1 对比验证计算参数
Table 1. Calculation parameters for verification
i Cc Ck kvr
/(×10–9 m•s–1)er σ'r
/kPaγsat
/(kN•m–3)hi/ m 1 0.382 0.765 3.628 1.393 100 18.31 3 2 0.521 0.525 0.815 1.422 100 18.18 5 3 0.628 0.418 0.434 1.501 100 17.91 8 4 0.286 0.358 1.128 1.058 100 18.62 4 表 2 4层地基计算参数
Table 2. Calculation parameters for four layered soils
参数 土层 1 2 3 4 CCN 0.071 0.056 0.039 0.052 CCT 0.431 0.632 0.496 0.308 CCR 0.226 0.335 0.271 0.209 Ck 0.634 0.532 0.474 0.310 kvr/(×10–9 m•s–1) 2.526 5.335 3.761 2.169 er 1.471 1.307 1.289 1.095 σ'r/kPa 100 100 100 100 γsat/(kN•m–3) 18.35 18.23 17.89 18.64 K1 1.209 1.209 1.209 1.209 K2/kPa 50 50 50 50 hi/m 2 6 7 5 -
BURLAND J B. On the compressibility and shear strength of natural clays[J]. Geotechnique, 1990, 40(3): 329-378. doi: 10.1680/geot.1990.40.3.329 LEROUEIL S, VAUGHAN P R. The general and congruent effects of structure in natural soils and weak rocks[J]. Geotechnique, 1990, 40(3): 467-488. doi: 10.1680/geot.1990.40.3.467 沈珠江. 土体结构性的数学模型——21 世纪土力学的核心问题[J]. 岩土工程学报,1996,18(1): 95-97. doi: 10.3321/j.issn:1000-4548.1996.01.015SHEN Zhujiang. Mathematical modelling considering soil structure: A key issue in soil mechanics in the 21st Century[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(1): 95-97. doi: 10.3321/j.issn:1000-4548.1996.01.015 王军,陈云敏. 均质结构性软土地基的一维固结解析解[J]. 水利学报,2003,34(3): 19-24. doi: 10.3321/j.issn:0559-9350.2003.03.004WANG Jun, CHEN Yunmin. Analytical solution to 1-D consolidation of homogeneous structured soft foundation[J]. Journal of Hydraulic Engineering, 2003, 34(3): 19-24. doi: 10.3321/j.issn:0559-9350.2003.03.004 XIE K H, XIA C Q, AN R, et al. A study on the one-dimensional consolidation of double-layered structured soils[J]. Computers and Geotechnics, 2016, 73: 189-198. doi: 10.1016/j.compgeo.2015.12.007 XIE K H, XIA C Q, AN R, et al. A study on one-dimensional consolidation of layered structured soils[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40(7): 1081-1098. doi: 10.1002/nag.v40.7 HU A F, XIA C Q, WU H, et al. A study on one-dimensional consolidation of layered structured aquitard soils in a leakage system[J]. Marine Georesources & Geotechnology, 2017, 35(3): 318-329. 曹宇春,陈云敏,黄茂松. 任意施工荷载作用下天然结构性软黏土的一维非线性固结分析[J]. 岩土工程学报,2006,25(8): 569-574.CAO Yuchun, CHEN Yunmin, HUANG Maosong. One-dimensional nonlinear consolidation analysis of structured natural soft clay subjected to arbitrarily time-dependent construction loading[J]. Chinese Journal of Geotechnical Engineering, 2006, 25(8): 569-574. 刘洋,宫志,王喆. 考虑结构应力的粘土一维非线性固结分析[J]. 土木建筑与环境工程,2012,34(2): 39-45. doi: 10.11835/j.issn.1674-4764.2012.02.007LIU Yang, GONG Zhi, WANG Zhe. One-dimensional nonlinear consolidation analysis of clay considering structural stress[J]. Journal of Civil, Architectural & Environmental Engineering, 2012, 34(2): 39-45. doi: 10.11835/j.issn.1674-4764.2012.02.007 KARIM M R, OKA F, KRABBENHOFT K, et al. Simulation of long-term consolidation behavior of soft sensitive clay using an elasto-viscoplastic constitutive model[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(16): 2801-2824. OZELIM L C D S, CAMAPUM DE CARVALHO J, CAVALCANTE A L B, et al. Novel approach to consolidation theory of structured and collapsible soils[J]. International Journal of Geomechanics, 2015, 15(4): 04014064. doi: 10.1061/(ASCE)GM.1943-5622.0000409 王立忠,丁利,陈云敏,等. 结构性软土压缩特性研究[J]. 土木工程学报,2004,37(4): 46-53. doi: 10.3321/j.issn:1000-131X.2004.04.010WANG Lizhong, DING Li, CHEN Yunmin, et al. Study on compressibility of structured soft soil[J]. China Civil Engineering Journal, 2004, 37(4): 46-53. doi: 10.3321/j.issn:1000-131X.2004.04.010 TAVENAS F, JEAN P, LEBLOND P. The permeability of natural soft clays, partⅡ:permeability characteristics[J]. Canadian Geotechnical Journal, 1983, 20(4): 645-660. doi: 10.1139/t83-073 ZENG L L, HONG Z S, CAI Y Q, et al. Change of hydraulic conductivity during compression of undisturbed and remolded clays[J]. Applied Clay Science, 2011, 51(1): 86-93. HORPIBULSUK S, SHIBUYA S, FUENKAJORN K, et al. Assessment of engineering properties of Bangkok clay[J]. Canadian Geotechnical Journal, 2007, 44(2): 173-187. doi: 10.1139/t06-101 王立忠,李玲玲. 结构性土体的施工扰动及其对沉降的影响[J]. 岩土工程学报,2007,29(5): 697-704. doi: 10.3321/j.issn:1000-4548.2007.05.011WANG Lizhong, LI Lingling. Field disturbance of structured clay and its effect on settlements of soil foundation[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(5): 697-704. doi: 10.3321/j.issn:1000-4548.2007.05.011 谢康和. 双层地基一维固结理论与应用[J]. 岩土工程学报,1994,16(5): 24-35. doi: 10.3321/j.issn:1000-4548.1994.05.004XIE Kanghe. Theory of one dimensional consolidation of double-layered ground and its applications[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(5): 24-35. doi: 10.3321/j.issn:1000-4548.1994.05.004 谢康和,潘秋元. 变荷载下任意层地基一维固结理论[J]. 岩土工程学报,1995,17(5): 80-85. doi: 10.3321/j.issn:1000-4548.1995.05.013XIE Kanghe, PAN Qiuyuan. Theory of one-dimensional consolidation of multi-layered soil under varied load[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(5): 80-85. doi: 10.3321/j.issn:1000-4548.1995.05.013 谢康和,郑辉,李冰河,等. 变荷载下成层地基一维非线性固结分析[J]. 浙江大学学报(工学版),2003,37(4): 426-431. doi: 10.3785/j.issn.1008-973X.2003.04.011XIE Kanghe, ZHENG Hui, LI Binghe, et al. Analysis of one dimensional nonlinear consolidation of layered soils under time-dependent loading[J]. Journal of Zhejiang University (Engineering Science), 2003, 37(4): 426-431. doi: 10.3785/j.issn.1008-973X.2003.04.011 -