• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

振幅对5 ∶ 1矩形断面非线性自激气动力的影响

林思源 廖海黎 王骑 熊龙

林思源, 廖海黎, 王骑, 熊龙. 振幅对5 ∶ 1矩形断面非线性自激气动力的影响[J]. 西南交通大学学报, 2019, 54(2): 249-259. doi: 10.3969/j.issn.0258-2724.20170573
引用本文: 林思源, 廖海黎, 王骑, 熊龙. 振幅对5 ∶ 1矩形断面非线性自激气动力的影响[J]. 西南交通大学学报, 2019, 54(2): 249-259. doi: 10.3969/j.issn.0258-2724.20170573
LIN Siyuan, LIAO Haili, WANG Qi, XIONG Long. Effects of Oscillation Amplitude on Nonlinear Motion-Induced Force for 5 ∶ 1 Rectangular Cylinder[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 249-259. doi: 10.3969/j.issn.0258-2724.20170573
Citation: LIN Siyuan, LIAO Haili, WANG Qi, XIONG Long. Effects of Oscillation Amplitude on Nonlinear Motion-Induced Force for 5 ∶ 1 Rectangular Cylinder[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 249-259. doi: 10.3969/j.issn.0258-2724.20170573

振幅对5 ∶ 1矩形断面非线性自激气动力的影响

doi: 10.3969/j.issn.0258-2724.20170573
基金项目: 国家自然科学基金资助项目(51308478,51678508);973国家重点基础研究发展计划资助项目(2013CB036301)
详细信息
    作者简介:

    林思源(1993—),男,博士研究生,研究方向为大跨度桥梁结构抗风,E-mail:linsiyuan01@foxmail.com

    通讯作者:

    王骑(1980—),男,讲师,博士,研究方向为大跨度桥梁结构抗风与桥梁空气动力学,E-mail:wangchee_wind@swjtu.edu.cn

  • 中图分类号: U441

Effects of Oscillation Amplitude on Nonlinear Motion-Induced Force for 5 ∶ 1 Rectangular Cylinder

  • 摘要: 宽高比为5∶1矩形断面的非线性自激气动力研究作为钝体空气动力学的基础性和前沿性研究,对钝体断面的非线性气动弹性行为分析有着重要的意义. 采用节段模型强迫振动风洞试验,结合模型表面同步测压技术,分析了振幅对宽高比为5∶1矩形试验断面自激气动力频谱特性和表面压力分布特性的影响,并借助本征正交分解分析了模型表面压力的模态特征函数,进而探讨了非线性气动力产生的流动机理. 试验及分析结果表明:5∶1矩形断面自激气动力的高次谐波分量仅在振幅不小于8° 的扭转运动下显著,但线性分量随着振幅增加呈非线性变化;在竖向运动或在小于8° 的扭转运动下,模型表面分离再附点位置靠近后缘且在一个周期内保持稳定,对应的压力模态为一阶对称分布,表明此时气动力仅由单一频率的主涡决定;在大于等于8° 的扭转运动下,一个周期内模型表面的分离再附点位置主要集中在前缘,对应的压力模态中也同时出现了对称分布的第1阶和反对称分布的第2和第3阶,表明此时出现了多个不同频率的主要旋涡,而频率高于运动频率的二次涡主导了高阶模态,并由此产生了气动力的高次谐波分量.

     

  • 图 1  强迫振动装置示意

    Figure 1.  Schematic diagram of forced motion test rig

    图 2  强迫振动节段模型风洞试验

    Figure 2.  Forced motion wind tunnel test for section models

    图 3  矩形断面测压孔布置

    Figure 3.  Layout of pressure taps on the rectangular cylinder

    图 4  静止状态模型各个测压断面的气动力系数

    Figure 4.  Aerodynamic coefficients for each section of a stationary model

    图 5  矩形断面的涡脱频率试验值和计算值的对比

    Figure 5.  Comparison of experimental and calculated values of vortex-shedding frequency for 5∶1 rectangular cylinder

    图 6  升力时程和频谱(Ur = 12,模型运动频率 = 2.5 Hz)

    Figure 6.  Time history and PSD of lift force(Ur = 12,heaving motion frequency = 2.5 Hz)

    图 7  竖向运动(Ur = 6)

    Figure 7.  PSD of heaving motion-induced lift and moment(Ur = 6)

    图 8  竖向运动(Ur = 12)

    Figure 8.  PSD of heaving motion-induced lift and moment(Ur = 12)

    图 10  扭转运动(Ur = 12)

    Figure 10.  PSD of pitching motion-induced lift and moment(Ur = 12)

    图 9  扭转运动(Ur = 6)

    Figure 9.  PSD of pitching motion-induced lift and moment(Ur = 6)

    图 11  扭转振幅对自激力矩的各阶谐波的影响(Ur = 12)

    Figure 11.  Effects of torsional amplitude on PSD of motion-induced moment

    图 12  不同振幅下模型上表面压力系数分布

    Figure 12.  Pressure coefficient distribution on the top surface of the rectangular cylinder under different oscillation amplitudes

    图 13  矩形断面流动分离示意

    Figure 13.  Schematic diagram of separation and reattachment of the flow

    图 14  一个运动周期内的时间划分

    Figure 14.  Time division in a period of motion

    图 15  不同时刻再附点位置变化

    Figure 15.  Location of reattachment at different time

    图 16  不同振幅下各阶次本征模态的贡献率

    Figure 16.  Contribution rate of POD mode at different oscillating amplitude

    表  1  试验工况组合

    Table  1.   Summary of testing cases

    振幅Ur
    扭转/(°)竖向/mm
    2、5、8、10、14、163.00、6.61、10.82、16.50、27.546、12
    下载: 导出CSV

    表  2  不同扭转振幅下表面压力场前3阶本征模态和断面压力系数分布

    Table  2.   Pressure coefficient distribution and first three POD mode at different torsion motion amplitude

    振幅/(°)POD模态平均压力系数脉动压力系数
    第1阶第2阶第3阶
    2
    8
    16
    下载: 导出CSV
  • BRUNO L, SALVETTI M V, RICCIARDELLI F. Benchmark on the aerodynamics of a rectangular 5∶1 cylinder:an overview after the first four years of activity[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2014, 126(1): 87-106.
    MATSUMOTO M, SHIRATO H, ARAKI K, et al. Spanwise coherence characteristics of surface pressure field on 2-D bluff bodies[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2001, 91(1): 155-63.
    RICCIARDELLI F, MARRA A M. Sectional aerodynamic forces and their longitudinal correlation on a vibrating 5∶1 rectangular cylinder[C]//Proceedings of the 6th International Colloquium on Bluff Body Aerodynamics and Applications. Milan: [s.n.], 2008: 1-4
    LE T H, MATSUMOTO M, SHIRATO H. Spanwise coherent structure of wind turbulence and induced pressure on rectangular cylinders[J]. Wind and Structures, 2009, 12(5): 441. doi: 10.12989/was.2009.12.5.441
    HAAN F L, KAREEM A. Anatomy of turbulence effects on the aerodynamics of an oscillating prism[J]. Journal of Engineering Mechanics, 2009, 135(9): 987-99. doi: 10.1061/(ASCE)EM.1943-7889.0000012
    TAMURA T, ITOH Y, WADA A, et al. Numerical study of pressure fluctuations on a rectangular cylinder in aerodynamic oscillation[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 54(2): 39-50.
    刘志文, 陈政清. H/B=1/5矩形断面气动性能研究[C]//第十三届全国结构风工程学术会议论文集(上册). 大连: [出版者不详], 2007: 91-99
    ZHU Z. LES prediction of aerodynamics and coherence analysis of fluctuating pressure on box girders of long-span bridges[J]. Computers & Fluids, 2015, 110: 169-180.
    刘小兵, 张海东, 王彦彪. 宽高比为5的矩形断面梁气动力展向相关性研究[J]. 工程力学, 2015, 32(增刊1): 50-54

    LIU Xiaobing, ZHANG Haidong, WANG Yanbiao. Study on spanwise correlation of aerodynamic force of rectangular cylinder with aspect ratio 5[J]. Engineering Mechanics, 2015, 32(S1): 50-54
    NODA M, UTSUNOMIYA H, NAGAO F, et al. Effects of oscillation amplitude on aerodynamic derivatives[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91(1/2): 101-11.
    WANG Q, LIAO H, WAN J, et al. Coupling and nonlinearity and spanwise correlation in aerodynamic force of a rectangular cylinder[C]//Proceedings of 8th International Colloquium on Bluff Body Aerodynamics and Applications(BBAA VIII). Boston: [s.n.], 2016: 1-10
    陈政清,于向东. 大跨桥梁颤振自激力的强迫振动法研究[J]. 土木工程学报,2002,35(5): 34-41. doi: 10.3321/j.issn:1000-131X.2002.05.008

    CHEN Zhengqing, YU Xiangdong. A new method for measuring flutter self-excited forces of long-span bridges[J]. China Civil Engineering Journal, 2002, 35(5): 34-41. doi: 10.3321/j.issn:1000-131X.2002.05.008
    DIANA G, RESTA F, ROCCHI D. A new numerical approach to reproduce bridge aerodynamic non-linearities in time domain[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(10/11): 1871-84.
    王骑. 大跨度桥梁断面非线性自激气动力与非线性气动稳定性研究[D]. 成都: 西南交通大学, 2011
    唐煜. 流线型箱梁断面非线性自激力与非线性颤振响应研究[D]. 成都: 西南交通大学, 2015
    HUANG L, XU Y L, LIAO H. Nonlinear aerodynamic forces on thin flat plate:numerical study[J]. Journal of Fluids & Structures, 2014, 44(7): 182-94.
    马存明. 流线箱型桥梁断面三维气动导纳研究[D]. 成都: 西南交通大学, 2007
    COOK N. Designers’ guide to EN 1991-1-4 eurocode 1: actions on structures, general actions part 1-4. Wind actions[M]. [S.l]: Thomas Telford Publishing, 2007: 66-67
    NAKAMURA Y, OZONO S. The effects of turbulence on a separated and reattaching flow[J]. Journal of Fluid Mechanics, 1987, 178: 477-90. doi: 10.1017/S0022112087001320
    MATSUMOTO M. Aerodynamic damping of prisms[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1996, 59(2/3): 159-75.
    李少鹏. 矩形和流线型箱梁断面抖振力特性研究[D]. 成都: 西南交通大学, 2015
    HOLMES J D. Analysis and synthesis of pressure fluctuations on bluff bodies using eigenvectors[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1990, 33(1/2): 219-30.
    刘祖军,杨詠昕. H形桥梁断面颤振的流场驱动机理及气流能量分析[J]. 土木工程学报,2013,46(4): 110-116.

    LIU Zujun, YANG Yongxin. Flow field mechanism and air energy characteristic of H-shape section in flutter[J]. China Civil Engineering Journal, 2013, 46(4): 110-116.
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  534
  • HTML全文浏览量:  243
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-23
  • 修回日期:  2017-09-25
  • 网络出版日期:  2018-10-08
  • 刊出日期:  2019-04-01

目录

    /

    返回文章
    返回