• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

钢筋与粗骨料超高性能混凝土粘结性能试验研究

赵灿晖 李浩稻 邓开来

赵灿晖, 李浩稻, 邓开来. 钢筋与粗骨料超高性能混凝土粘结性能试验研究[J]. 西南交通大学学报, 2019, 54(5): 937-944. doi: 10.3969/j.issn.0258-2724.20170513
引用本文: 赵灿晖, 李浩稻, 邓开来. 钢筋与粗骨料超高性能混凝土粘结性能试验研究[J]. 西南交通大学学报, 2019, 54(5): 937-944. doi: 10.3969/j.issn.0258-2724.20170513
ZHAO Canhui, LI Haodao, DENG Kailai. Experimental Study on Bonding Performance Between Rebar and Coarse Aggregate Ultra-High Performance Concrete[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 937-944. doi: 10.3969/j.issn.0258-2724.20170513
Citation: ZHAO Canhui, LI Haodao, DENG Kailai. Experimental Study on Bonding Performance Between Rebar and Coarse Aggregate Ultra-High Performance Concrete[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 937-944. doi: 10.3969/j.issn.0258-2724.20170513

钢筋与粗骨料超高性能混凝土粘结性能试验研究

doi: 10.3969/j.issn.0258-2724.20170513
基金项目: 国家自然科学基金项目(51708466,51178393);中央高校基本科研业务费专项资金(2682017CX002)
详细信息
    作者简介:

    赵灿晖(1970—),男,教授,研究方向为组合结构桥梁及桥梁抗震,E-mail:zch2887@163.com

  • 中图分类号: TU375

Experimental Study on Bonding Performance Between Rebar and Coarse Aggregate Ultra-High Performance Concrete

  • 摘要: 为了研究含粗骨料超高性能混凝土(UHPC)与带肋钢筋的粘结性能,对6组钢筋-粗骨料UHPC中心拉拔试件进行了加载测试,研究了钢筋直径、保护层厚度、粘结锚固长度对粘结应力的影响,基于厚壁圆筒理论和拉梅解答分析了保护层厚度的影响. 采用回归分析的方法得到了极限粘结应力的计算公式,并采用其他文献的试验结果验证了该公式的有效性. 研究结果表明:粗骨料UHPC与钢筋的粘结锚固破坏模式与活性粉末混凝土(RPC)相似,有“刮犁破坏”和“劈裂破坏”两种模式;粗骨料UHPC所需钢筋的最小保护层厚度略大于RPC,粘结锚固长度与RPC相近;保护层厚度、粘结锚固长度存在相互影响,粘结锚固长度足够时可适当减小保护层厚度;提出了带肋钢筋在粗骨料UHPC中保护层厚度和锚固长度的建议值.

     

  • 图 1  试件构造

    Figure 1.  Structure of the specimen

    图 2  加载装置

    Figure 2.  Loading setup

    图 3  试件典型破坏模式

    Figure 3.  Typical failure modes of specimens

    图 4  保护层厚度的影响

    Figure 4.  Effect of the thickness of cover layer

    图 5  粘结锚固长度的影响

    Figure 5.  Effect of the bonding length

    图 6  钢筋凸助对周围UHPC的挤压作用

    Figure 6.  Compression stress from the rib of the reinforcement to the surrounding UHPC

    图 7  环向拉应力与相对保护层厚度的关系

    Figure 7.  Relationship between the thickness of the cover layer and hoop tensile stress

    图 8  极限粘结应力与相对保护层厚度的关系

    Figure 8.  Relationship between the thickness of the cover layer and peak bonding stress

    图 9  极限粘结应力与相对锚固长度的关系

    Figure 9.  Relationship between the thickness of the bonding length and peak bonding stress

    表  1  试验用粗骨料UHPC配合比

    Table  1.   Mix proportion of coarse aggressive UHPC

    水泥微硅粉河砂碎石钢纤维外加剂
    78613690141021015918
    下载: 导出CSV

    表  2  粗骨料UHPC力学性能指标

    Table  2.   Mechanical characteristics of coarse aggressive UHPC

    类别fcu/MPaft/MPaEc/GPa
    粗骨料UHPC177.113.859.9
    RPC168.614.647.6
    下载: 导出CSV

    表  3  钢筋-UHPC中心拔出试件尺寸参数

    Table  3.   Parameters of specimens

    试件编号cdal
    LB18-4d-1515183972
    LB18-4d-2020183972
    LB18-5d-2020183090
    LB20-5d-15152025100
    LB20-5d-20202025100
    LB20-6d-20202015120
     注:以LB18-4d-15为例说明试件编号规则,该试件标号
    表示:钢筋直径为18 mm,粘结锚固长度取4倍钢筋
    直径,保护层厚度为15 mm.
    下载: 导出CSV

    表  4  粘结应力与钢筋应力

    Table  4.   Bonding stress and steel stress

    试件编号τcrτuσcrσu破坏模式
    LB18-4d-1526.3730.70421.9491.2劈裂破坏
    LB18-4d-2024.5933.01393.4528.2刮犁破坏
    LB18-5d-2021.6626.72433.2534.4刮犁破坏
    LB20-5d-1519.8722.40397.4448.0劈裂破坏
    LB20-5d-2019.7422.96394.8459.2劈裂破坏
    LB20-6d-2020.3522.10488.4530.4刮犁破坏
      注:根据材料性能试验,直径18 mm 和20 mm 的钢筋实测屈服强度分别是470 MPa和457 MPa.
    下载: 导出CSV

    表  5  粘结应力的拟合精度

    Table  5.   Accuracy of the regression analysis of the bonding stress

    试件编号τu,t/MPaτu,c/MPa比值
    LB18-4d-1530.7030.391.014 0
    LB20-5d-1522.4022.311.004 0
    LB18-4d-2033.0132.541.014 6
    LB20-5d-2022.9625.220.910 2
    LB18-5d-2026.7226.511.007 6
    LB20-6d-2022.1020.921.056 6
    下载: 导出CSV

    表  6  式(5)精度校对

    Table  6.   Validation of quation(5)

    试件d/mml/mmc/mm${\tau _{{\rm{u,t}}}}$/
    MPa
    ${\tau _{{\rm{u,c}}}}$/
    MPa
    比值
    116481231.136.20.858 1
    216482236.0036.90.975 1
    316483241.937.61.114 4
     注:所选RPC试件混凝土抗压强度 fcu = 147.1 MPa,钢
       纤维体积掺量Vf = 2%.
    下载: 导出CSV

    表  7  最小锚固长度

    Table  7.   Calculation for the minimum anchorage length

    试件fy/MPa${\tau _{\rm{u}}}$/MPala/mm建议锚固长度
    LB18-4d-2047032.5465.004d
    LB20-6d-2045720.92109.226d
    下载: 导出CSV
  • FEHLING E, SCHMIDT M, WALRAVEN J, et al. Ultra-high performance UHPC: Fundamentals, design, examples[M]. Berlin Germany: Ernst & Sohn, 2014: 1-3
    ROSSI P. Ultra-high performance fiber-reinforced concretes[J]. Concrete International, 2001, 23(12): 46-52.
    GRAYBEAL B. Ultra-high performance concrete [R]. [S.l.]: Federal Highway Administration, 2011
    GRAYBEAL B. Material property characterization of ultra-high performance concrete[R]. [S.l.]: Federal Highway Administration, 2006
    AFGC. Ultra high performance fiber-reinforced concretes interim recommendations[M]. Paris: AFGC Publication, 2002: 7-9
    SCHEYDT J, HEROLD G, MUELLER H S, et al. Development and application of UHPC convenience blends[C]//Second International Symposium on Ultra High Performance Concrete. Kassel: Kassel University, 2008: 69-76
    邓宗才,袁常兴. 高强钢筋与活性粉末混凝土粘结性能的试验研究[J]. 土木工程学报,2014,47(3): 69-78.

    DENG Zongcai, YUAN Changxing. Experimental study on bond capability between high strength rebar and reactive powder concrete[J]. China Civil Engineering Journal, 2014, 47(3): 69-78.
    李鹏,郑七振,龙莉波,等. 钢筋埋长对超高性能混凝土与钢筋粘结性能的影响[J]. 建筑施工,2016,38(12): 1722-1723.

    LI Peng, ZHENG Qizhen, LONG Libo, et al. Impact of embedded rebar length on adhesive property between Ultra High Performance Concrete and rebar[J]. Building Construction, 2016, 38(12): 1722-1723.
    安明喆,张盟. 变形钢筋与活性粉末混凝土的粘结性能试验研究[J]. 中国铁道科学,2007,28(2): 50-54. doi: 10.3321/j.issn:1001-4632.2007.02.009

    AN Mingzhe, ZHANG Meng. Experimental research of bond capability between deformed bars and reactive powder concrete[J]. China Railway Science, 2007, 28(2): 50-54. doi: 10.3321/j.issn:1001-4632.2007.02.009
    贾方方. 钢筋与活性粉末混凝土粘结性能的试验研究[D]. 北京: 北京交通大学, 2013
    程俊,刘加平,张丽辉. 含粗骨料超高性能混凝土单轴拉伸性能及机理分析[J]. 混凝土与水泥制品,2015,12: 1-5. doi: 10.3969/j.issn.1000-4637.2015.01.001

    CHENG Jun, LIU Jiaping, ZHANG Lihui. Properties of uniaxial tension and mechanism of strengthening and toughening of ultra-high performance concrete containing coarse aggregate[J]. China Concrete and Cement Products, 2015, 12: 1-5. doi: 10.3969/j.issn.1000-4637.2015.01.001
    BOLANDER J E, CHOI S, DUDDUKURI S R. Fracture of fiber-reinforced cement composites:effects of fiber dispersion[J]. International Journal of Fracture, 2008, 154(1/2): 73-86.
    DEEB R, KARIHALOO B L, KULASEGARAM S. Reorientation of short steel fibres during the flow of self-compacting concrete mix and determination of the fibre orientation factor[J]. Cement and Concrete Research, 2014, 56: 112-120. doi: 10.1016/j.cemconres.2013.10.002
    闫光杰,阎贵平,安明喆,等. 200 MPa级活性粉末混凝土试验研究[J]. 铁道学报,2004,26(2): 116-119. doi: 10.3321/j.issn:1001-8360.2004.02.022

    YAN Guangjie, YAN Guiping, AN Mingzhe, et al. Experimental study on 200 MPa reactive powder concrete[J]. Journal of The China Railway Society, 2004, 26(2): 116-119. doi: 10.3321/j.issn:1001-8360.2004.02.022
    中国工程建设标准化协会标准. 钢纤维混凝土试验方法: CECS 13—2009[S]. 北京: 中国计划出版社, 2010
  • 加载中
图(9) / 表(7)
计量
  • 文章访问数:  497
  • HTML全文浏览量:  339
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-10
  • 修回日期:  2018-03-02
  • 网络出版日期:  2019-05-20
  • 刊出日期:  2019-10-01

目录

    /

    返回文章
    返回