Seismic Performance of Multi-storey Masonry Wall Repaired by Carbon Fiber Reinforced Polymer Grids
-
摘要: 为了研究碳纤维增强复合材料(CFRP)网格加固砌体结构的破坏机理及加固效果,通过拟静力试验将一片3层砌体开洞墙体加载至破坏,在破坏集中区域单面粘贴CFRP网格进行加固之后再次进行拟静力试验,以最小加固量为指标对加固前后墙体的抗震性能进行了对比分析,并提出了相应的加固建议. 研究结果表明:采用CFRP网格修复可以有效地阻止和延缓墙体受剪斜裂缝的出现及开展,从而提升了墙体的抗震性能,若以抗剪承载力完全恢复为指标,建议最小修复面积为22%;修复后墙体的破坏模式与修复位置相关,本试验以CFRP网格剥离及窗间墙破坏为主,破坏由低至高逐层发生,同层墙肢范围内,由未修复区向修复区发展;考虑窗间墙破坏易引起结构整体破坏和倒塌,因此应优先修复剪力较大层的窗间墙区域,并提供必要的加强措施.
-
关键词:
- 多层砌体结构 /
- 碳纤维增强复合材料(CFRP)网格 /
- 抗震修复 /
- 拟静力试验
Abstract: To study the failure mechanism and repair effect of plain masonry structure repaired by carbon fiber reinforced polymer (CFRP) grids, firstly, a three-storey masonry wall with openings was destroyed under the pseudo-static action, then, the areas where the cracks intensively occurred in destroyed masonry wall were repaired by CFRP grids, at last, the pseudo-static action was retested. The seismic performances of the masonry wall prior to and after repair were compared according to the lower limit of repair requirements, and the repairing suggestions were proposed. The results show that CFRP grids can effectively retard or prevent the occurrence of masonry shear diagonal cracks, and then the seismic resistance of masonry walls is developed. The lower limit of repair area is 22% when the shear bearing capacity fully restored is the indicator. The failure modes of the walls after repaired are related to the repair positions, the CFRP grids debonding and piers failure are the majority failure modes of the test. The failures initiate layer by layer from low to high, and develop from the unrepaired to the repaired zones on the same floor. The piers failure is most likely to cause the structure failure or even collapse, therefore, CFRP grids need to be preferentially applied to the piers where the shear stress is relative large, the additional strengthening measures are also essential. -
表 1 砌体抗压强度
Table 1. Compressive strength of masonry wall
MPa 材料 抗压强度 砂浆 8.6 黏土砖 17.8 混凝土立方体 35.6 表 2 材料性能
Table 2. Material properties
材料 抗拉强度/MPa 弹性模量/GPa 厚度/mm 断裂伸长率/% CFRP网格 4 300 240.0 0.047 1.49(X 方向),1.50(Y 方向) CFRP布 4 153 242.0 0.167 1.72 环氧树脂胶 30 4.5 0.90 -
TOMAZEVIC M. Seismic design of masonry structures[J]. Progress in Structural Engineering & Materials, 2010, 1(1): 88-95. 刘西光,王庆霖. 多层砌体结构墙体的抗震剪切强度研究[J]. 建筑结构,2012,42(12): 112-116.LIU Xiguang, WANG Qinglin. Study on seismic shear strength of wall for multi-story masonry structures[J]. Building Structure, 2012, 42(12): 112-116. 常业军,方致君,王军. 多层砌体房屋抗震性能分析[J]. 华东冶金学院学报,2000,17(4): 358-362. doi: 10.3969/j.issn.1671-7872.2000.04.023CHANG Yejun, FANG Zhijun, WANG Jun. Quality analysis of earthquake-proof of multi-story masonry building[J]. Journal of East China University of Metallurgy, 2000, 17(4): 358-362. doi: 10.3969/j.issn.1671-7872.2000.04.023 信任,姚继涛. 多层砌体结构墙体整体破坏模式研究[J]. 世界地震工程,2013,29(1): 139-144. doi: 10.3969/j.issn.1007-6069.2013.01.022XIN Ren, YAO Jitao. Research on entire failure modes of multi-storey masonry walls[J]. World Earthquake Engineering, 2013, 29(1): 139-144. doi: 10.3969/j.issn.1007-6069.2013.01.022 苏启旺,孙玉平,赵世春. 基于震害的多层砌体结构抗震性能评估方法[J]. 西南交通大学学报,2011,46(1): 30-35. doi: 10.3969/j.issn.0258-2724.2011.01.005SU Qiwang, SUN Yuping, ZHAO Shichun. Seismic evaluation method of multi-storey masonry buildings based on earthquake damage[J]. Journal of Southwest Jiaotong University, 2011, 46(1): 30-35. doi: 10.3969/j.issn.0258-2724.2011.01.005 信任,姚继涛. 多层砌体结构墙体典型抗震加固技术和方法[J]. 西安建筑科技大学学报(自然科学版),2010,42(2): 251-255. doi: 10.3969/j.issn.1006-7930.2010.02.020XIN Ren, YAO Jitao. The a seismic strengthening techniques and methods of multi-story masonry structures[J]. Journal of Xi ’an University of Architecture and Technology (Natural Science Edition), 2010, 42(2): 251-255. doi: 10.3969/j.issn.1006-7930.2010.02.020 高小旺,高炜,刘佳,等. 多层砌体教学楼抗震加固为砌体墙与钢筋混凝土墙组合结构的探讨[J]. 建筑结构,2010,40(5): 8-10.GAO Xiaowang, GAO Wei, LIU Jia, et al. Discussion on composite structure made up of masonry wall and reinforced concrete wall for seismic reinforcement of multi-story masonry school buildings[J]. Building Structure, 2010, 40(5): 8-10. ELGAWADY M A, LESTUZZI P, BADOUX M. Static cyclic response of masonry walls retrofitted with fiber-reinforced polymers[J]. Journal of Composites for Construction, 2007, 11(1): 50-61. doi: 10.1061/(ASCE)1090-0268(2007)11:1(50) ZHOU D, LEI Z, WANG J. In-plane behavior of seismically damaged masonry walls repaired with external BFRP[J]. Composite Structures, 2013, 102(4): 9-19. 岳清瑞,杨勇新. 纤维增强复合材料加固结构耐久性研究综述[J]. 建筑结构学报,2009,30(6): 8-15.YUE Qingrui, YANG Yongxin. Introduction to durability of concrete strengthened with fiber reinforced polymer[J]. Journal of Building Structures, 2009, 30(6): 8-15. 冯鹏,叶列平,包睿,等. FRP编织网结构体系的概念、形式及基本受力分析[J]. 建筑结构学报,2007,28(4): 109-116. doi: 10.3321/j.issn:1000-6869.2007.04.015FENG Peng, YE Lieping, BAO Rui, et al. Concepts,forms and basic analysis of FRP woven web structure[J]. Journal of Building Structures, 2007, 28(4): 109-116. doi: 10.3321/j.issn:1000-6869.2007.04.015 林磊,叶列平. FRP加固砖砌体墙的试验研究与分析[J]. 建筑结构,2005(3): 21-27.LIN Lei, YE Lieping. Experimental investigation on masonry wall strengthened with FRP[J]. Building Structure, 2005(3): 21-27. MOSALLAM A, BANERJEE S. Enhancement in in-plane shear capacity of unreinforced masonry (URM) walls strengthened with fiber reinforced polymer composites[J]. Composites Part B-Engineering, 2011, 42(6): 1657-1670. doi: 10.1016/j.compositesb.2011.03.015 LORENZIS L D, TENG J G. Near-surface mounted FRP reinforcement:an emerging technique for strengthening structures[J]. Composites Part B:Engineering, 2007, 38(2): 119-143. doi: 10.1016/j.compositesb.2006.08.003 ELGAWADY M A, LESTUZZI P, BADOUX M. In-plane seismic response of URM walls upgraded with FRP ASCE[J]. Journal of Composites for Construction, 2005, 9(6): 524-535. doi: 10.1061/(ASCE)1090-0268(2005)9:6(524) 赵彤,张晨军,谢剑,等. 碳纤维布用于砖砌体抗震加固的试验研究[J]. 地震工程与工程振动,2001,21(2): 89-95. doi: 10.3969/j.issn.1000-1301.2001.02.016ZHAO Tong, ZHANG Chenjun, XIE Jian, et al. Experimental study on seismic reinforcement of brick masonry walls with continuous carbon fiber sheet[J]. Earthquake Engineering and Engineering Vibration, 2001, 21(2): 89-95. doi: 10.3969/j.issn.1000-1301.2001.02.016 MILANE G. Kinematic FE limit analysis homogenization model for masonry walls reinforced with continuous FRP grids[J]. International Journal of Solids & Structures, 2011, 48(2): 326-345. PAPANICOLAOU C G, TRIANTAFILLOU T C, PAPATHANASIOU M, et al. Textile reinforced mortar (TRM) versus FRP as strengthening material of URM walls:out-of-plane cyclic loading[J]. Materials & Structures, 2008, 41(1): 143-157. PAPATHANASIOU C, TRIANTAFILLOU T C, LEKKA M. Externally bonded grids as strengthening and seismic retrofitting materials of masonry panels[J]. Construction & Building Materials, 2011, 25(2): 504-514. 陕西省建筑科学研究院. 砌体结构工程施工规范: GB 50924—2014[S]. 北京: 中国建筑工业出版社, 2014. 中国建筑科学研究院. 建筑抗震试验规程: JGJ/T 101—2015[S]. 北京: 中国建筑工业出版社, 2015. 信任. 多层砌体结构破坏模式研究与控制[D]. 西安: 西安建筑科技大学, 2012. TOMAZEVIC M. Damage as a measure for earthquake-resistant design of masonry structures:Slovenian experience[J]. Canadian Journal of Civil Engineering, 2007, 34(11): 1403-1412. doi: 10.1139/L07-128 SANTA-MARIA H, ALCAINO P. Repair of in-plane shear damaged masonry walls with external FRP[J]. Construction & Building Materials, 2011, 25(3): 1172-1180.