• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

高速铁路有砟道床横向阻力特性与固化技术

井国庆 贾文利 付豪 卢炜

井国庆, 贾文利, 付豪, 卢炜. 高速铁路有砟道床横向阻力特性与固化技术[J]. 西南交通大学学报, 2019, 54(5): 1087-1092. doi: 10.3969/j.issn.0258-2724.20170480
引用本文: 井国庆, 贾文利, 付豪, 卢炜. 高速铁路有砟道床横向阻力特性与固化技术[J]. 西南交通大学学报, 2019, 54(5): 1087-1092. doi: 10.3969/j.issn.0258-2724.20170480
JING Guoqing, JIA Wenli, FU Hao, LU Wei. High-Speed Ballasted Railway Track Lateral Resistance Characteristics and Reinforcements[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 1087-1092. doi: 10.3969/j.issn.0258-2724.20170480
Citation: JING Guoqing, JIA Wenli, FU Hao, LU Wei. High-Speed Ballasted Railway Track Lateral Resistance Characteristics and Reinforcements[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 1087-1092. doi: 10.3969/j.issn.0258-2724.20170480

高速铁路有砟道床横向阻力特性与固化技术

doi: 10.3969/j.issn.0258-2724.20170480
基金项目: 国家自然科学基金资助项目(51578051)
详细信息
    作者简介:

    井国庆(1979—),男,副教授,博士,研究方向为轨道结构及轨道力学,电话:15901173048,E-mail:gqjing@bjtu.edu.cn

  • 中图分类号: U213.772

High-Speed Ballasted Railway Track Lateral Resistance Characteristics and Reinforcements

  • 摘要: 高速铁路有砟道床存在发生飞砟的可能性,且飞砟概率随着砟肩堆高增加而增加,因此部分国家降低砟肩堆高,甚至采用平肩结构,但随之会引起道床阻力降低. 通过研究砟肩堆高对道床阻力的影响,同时在此基础上,提出了聚氨酯局部固化方案,包含枕心固化和枕端固化,均在增加平肩式道床横向阻力的同时不影响捣固维修作业. 道床横向阻力试验结果表明:与砟肩堆高150 mm相比,采用平肩式道床横向阻力降低30%;喷涂200 mm和300 mm聚氨酯的情况下,采用枕端固化的道床横向阻力分别可提高阻力约41%、60%,枕心固化可分别提高约31%、40%,综合固化(枕心和枕端固化同时采用)可提高阻力约70%、100%.

     

  • 图 1  道砟颗粒级配

    Figure 1.  Particle Size Distribution (PSD) for test

    图 2  轨枕端部道砟受力情况概况

    Figure 2.  Disturbed zone of shoulder ballast

    图 3  聚氨酯喷涂范围

    Figure 3.  Area of polyurethane spraying

    图 4  聚氨酯喷涂

    Figure 4.  Polyurethane injection

    图 5  道床横向阻力测试

    Figure 5.  Lateral resistance tests

    图 6  砟肩堆高影响

    Figure 6.  Influence of shoulder height

    图 7  枕端固化影响

    Figure 7.  Influence of shoulder reinforcement

    图 8  枕心固化影响

    Figure 8.  Influence of crib-ballast reinforcement

    图 9  综合固化影响

    Figure 9.  Influence of synthetical reinforcement

    表  1  聚氨酯参数

    Table  1.   Parameters of polyurethane

    参数 数值
    密度/(g•cm–3 1.13
    拉伸强度/MPa 14.2
    断裂伸长率/% 20
    撕裂强度/(N•mm–1 60
    硬度(邵D) 46
    下载: 导出CSV

    表  2  试验工况

    Table  2.   Testing condition

    工况 砟肩堆高
    /mm
    枕心高度
    /mm
    固化
    方式
    喷涂深度
    /mm
    1 150 0
    2 0 – 40
    3 0 – 40 枕端固化 200
    4 0 – 40 枕端固化 300
    5 0 – 40 枕心固化 200
    6 0 – 40 枕心固化 300
    7 0 – 40 综合固化 200
    8 0 – 40 综合固化 300
    下载: 导出CSV

    表  3  聚氨酯用量

    Table  3.   Quantity of polyurethane

    固化方式 粘结深度/mm 聚氨酯用量/kg
    枕端固化 200 0.26
    300 0.82
    枕心固化 200 0.10
    300 0.32
    综合固化 200 0.36
    300 1.14
    下载: 导出CSV
  • TUTUMLUER E, HUANG H, HASHASH Y. Aggregate shape effects on ballast tamping and railroad track lateral stability[C]// AREMA Annual Conference.Loisville: AREMA, 2006: 17-20
    井国庆. 铁路有砟道床[M]. 北京: 中国铁道出版社, 2012: 15-70
    ESVELD C. Modern railway track[M]. Delft: MRT-Production, 2001: 52-58
    高亮,罗奇,徐旸,等. 道床断面尺寸对道床横向阻力的影响[J]. 西南交通大学学报,2014,49(6): 954-960. doi: 10.3969/j.issn.0258-2724.2014.06.004

    GAO Liang, LUO Qi, XU Yang. Effects of ballast bed section dimension on its lateral resistance[J]. Journal of Southwest Jiaotong University, 2014, 49(6): 954-960. doi: 10.3969/j.issn.0258-2724.2014.06.004
    刘浩,谢铠泽,王平,等. 道床阻力区域分布及退化对钢轨纵向力的影响[J]. 西南交通大学学报,2017,52(1): 98-105. doi: 10.3969/j.issn.0258-2724.2017.01.014

    LIU Hao, XIE Kaize, WANG Ping, et al. Effect of regional distribution and degradation of ballast resistance on longitudinal force of rail[J]. Journal of Southwest Jiaotong University, 2017, 52(1): 98-105. doi: 10.3969/j.issn.0258-2724.2017.01.014
    国家铁路局. 高速铁路设计规范: TB 10621—2014[S]. 北京: 中国铁道出版社, 2014
    井国庆,王子杰,林建. 基于力学平衡原理飞砟机理与防治研究[J]. 铁道科学与工程学报,2014(6): 96-101. doi: 10.3969/j.issn.1672-7029.2014.06.017

    JING Guoqing, WANG Zijie, LIN Jian. Mechanical equilibriu m analysis of ballast flight mechanis m and counteracting measures[J]. Journal of Railway Science and Engineering, 2014(6): 96-101. doi: 10.3969/j.issn.1672-7029.2014.06.017
    SAAT M R, BEDINIJACOBINI F, TUTUMLUER E, et al. Identification of high-speed rail ballast flight risk factors and risk mitigation strategies[R]. Sydeny: 10th World Congress on Railway Research, 2013
    QUINN A D. A full-scale experimental and modelling study of ballast flight under high-speed trains[J]. Proceedings of the Institution of Mechanical Engineers Part f Journal of Rail & Rapid Transit, 2010, 224(2): 61-74.
    LE P L, POWRIE W. Contribution of base,crib,and shoulder ballast to the lateral sliding resistance of railway track:a geotechnical perspective[J]. Proceedings of the Institution of Mechanical Engineers Part F Journal of Rail & Rapid Transit, 2011, 225(2): 113-129.
    WANG Z J, JING G Q, LIU G X. Analysis on railway ballast-glue micro-characteristics[J]. Applied Mechanics & Materials, 2013(477/478): 535-538.
    STJEPAN L. Track stability using ballast bonding method[J]. Slovenski Kongres O Cestah In Prometu, 2010, 10: 333-340.
    WOODWARD P K, KENNEDY J, MEDERO G M, et al. Maintaining absolute clearances in ballasted railway tracks using in situ three-dimensional polyurethane GeoComposites[J]. Proceedings of the Institution of Mechanical Engineers Part F Journal of Rail & Rapid Transit, 2012, 226(3): 257-271.
    THOMAS S, WOODWARD P, LAGHROUCHE O. Influence of stiffening ballasted track bed overlying a masonry arch bridge using a polyurethane polymer material[J]. Construction & Building Materials, 2015, 92: 111-117.
    KRUGLIKOV A A, YAVNA V A, ERMOLOV Y M. Strengthening of the railway ballast section shoulder with two-component polymeric binders[J]. Transportation Geotechnics, 2017, 11: 133-143. doi: 10.1016/j.trgeo.2017.05.004
    DERSCH M, TUTUMLUER E, BOWER C P. Polyurethane coating of railroad ballast aggregate for improved performance[C]// Joint Rail Conference. Urbana: American Society of Mechanical Engineers, 2010: 337-342
    郄录朝,王红,许永贤. 聚氨酯固化道床的力学性能试验研究[J]. 铁道建筑,2015(1): 107-112. doi: 10.3969/j.issn.1003-1995.2015.01.24

    QIE Luchao, WANG Hong, XU Yongxian. Experimental study on mechanical performance of polyurethane solidified ballast bed[J]. Railway Engineering, 2015(1): 107-112. doi: 10.3969/j.issn.1003-1995.2015.01.24
    PLOOY R F D. Characterisation of rigid polyurethane foam reinforced ballast through cyclic loading box tests[D]. Pretoria: University of Pretoria, 2016
    铁道部运输局. 2012 高速铁路有砟轨道线路维修规则(试行)[S]. 北京: 中国铁道出版社, 2012
    LICHTBERGER B. the lateral resistance of the track[J]. European Railway Review, 2007, 3: 1-7.
    PEN L L, BHANDARI A R, POWRIE W. Sleeper end resistance of ballasted railway tracks[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2014, 140(5): 04014004-1-04014004-14.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  503
  • HTML全文浏览量:  265
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-30
  • 修回日期:  2017-09-13
  • 网络出版日期:  2019-02-23
  • 刊出日期:  2019-10-01

目录

    /

    返回文章
    返回