• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

砂雨法饱和模型制样相对密度控制要素与评价方法

王海 王永志 袁晓铭 方浩 段雪锋 汤兆光

王海, 王永志, 袁晓铭, 方浩, 段雪锋, 汤兆光. 砂雨法饱和模型制样相对密度控制要素与评价方法[J]. 西南交通大学学报, 2019, 54(2): 343-350, 372. doi: 10.3969/j.issn.0258-2724.20170477
引用本文: 王海, 王永志, 袁晓铭, 方浩, 段雪锋, 汤兆光. 砂雨法饱和模型制样相对密度控制要素与评价方法[J]. 西南交通大学学报, 2019, 54(2): 343-350, 372. doi: 10.3969/j.issn.0258-2724.20170477
WANG Hai, WANG Yongzhi, YUAN Xiaoming, FANG Hao, DUAN Xuefeng, TANG Zhaoguang. Control Factors and Assessment Technique of Relative Density Using Pluviation Method for Saturated Model[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 343-350, 372. doi: 10.3969/j.issn.0258-2724.20170477
Citation: WANG Hai, WANG Yongzhi, YUAN Xiaoming, FANG Hao, DUAN Xuefeng, TANG Zhaoguang. Control Factors and Assessment Technique of Relative Density Using Pluviation Method for Saturated Model[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 343-350, 372. doi: 10.3969/j.issn.0258-2724.20170477

砂雨法饱和模型制样相对密度控制要素与评价方法

doi: 10.3969/j.issn.0258-2724.20170477
基金项目: 中国地震局工程力学研究所基本科研业务费专项资助项目(2017B05);国家自然科学基金资助项目(51609218);黑龙江省自然科学基金资助项目(LC2015021)
详细信息
    作者简介:

    王海(1989—),男,博士研究生,研究方向为岩土工程与土动力试验方法,E-mail:xiaohaimi2014@126.com

    通讯作者:

    王永志(1984—),男,副研究员,研究方向为岩土工程防灾、地基工程与模型试验方法,E-mail:yong5893741@163.com

  • 中图分类号: TU41

Control Factors and Assessment Technique of Relative Density Using Pluviation Method for Saturated Model

  • 摘要: 为满足动力离心液化试验相对密度(Dr)低的制样需求,实现砂雨法饱和模型制样相对密度的准确控制,建立了设备制模稳定性评价方法,通过自主研制一套适于饱和模型制样的鸭嘴式砂雨法装置,开展了三组干砂/饱和砂模型对比试验;通过分析出砂口尺寸、落距、移动速度等控制要素的影响,对新型装置制样性能进行了验证;采用微型动力触探仪测试饱和模型不同位置及深度的Dr空间分布,给出了模型均匀稳定性评价方法;建立描述砂雨法制样过程流速变化的数学模型和推导表达式,提出了控制稳态Dr的归一化标准. 研究结果表明:3 mm为低密实度制样的最佳出砂口尺寸;饱和模型Dr随水中落距的变化率为空中落距变化率的3.5倍,水中落距是饱和制样密实度的主导控制要素;出砂口移动速度最高达到颗粒落速的31%,对低密实度制样影响不可忽略;设备移速与落距对颗粒流速及试样Dr大小具有决定作用.

     

  • 图 1  砂雨法设备及试验设计

    Figure 1.  Sand pluviator and experiment design

    图 2  出砂口

    Figure 2.  Nozzles

    图 3  微型动力触探设备示意

    Figure 3.  Mini dynamic cone penetrometer

    图 4  探头尺寸

    Figure 4.  Size of cone tips

    图 5  标准砂级配曲线

    Figure 5.  Standard sand gradation

    图 6  出砂口尺寸标定结果

    Figure 6.  Calibration results of nozzle size

    图 7  干砂/饱和砂对比试验结果

    Figure 7.  Contrast tests results of dry and saturated sands

    图 8  测点分布与变异系数

    Figure 8.  Measuring points distribution and coefficient of variation

    图 9  中心与边界区域端阻

    Figure 9.  Cone resistance of central and boundary region

    图 10  空中落速落距关系

    Figure 10.  Drop height and velocity in the air

    图 11  不同落距下水面处vh/vv

    Figure 11.  vh/vv at water surface with different drop height

    图 12  水中vh/vv随时间变化曲线

    Figure 12.  Relation between vh/vv and time in water

  • HUANG A B, CHANG W J, HSU H H, et al. A mist pluviation method for reconstituting silty sand specimens[J]. Engineering Geology, 2015, 188(1): 1-9.
    马险峰,孔令刚,方薇,等. 砂雨法试样制备平行试验研究[J]. 岩土工程学报,2014,36(10): 1791-1801. doi: 10.11779/CJGE201410005

    MA Xianfeng, KONG Linggang, FANG Wei, et al. Parallel tests on preparation of samples with sand pourer[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1791-1801. doi: 10.11779/CJGE201410005
    李浩,罗强,张正,等. 砂雨法制备砂土地基模型控制要素试验研究[J]. 岩土工程学报,2014,36(10): 1872-1878. doi: 10.11779/CJGE201410015

    LI Hao, LUO Qiang, ZHANG Zheng, et al. Experimental study on control element of sand pourer preparation of sand foundation model[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1872-1878. doi: 10.11779/CJGE201410015
    KHARI M, KASSIM K, ADNAN A. Sand samples’ preparation using mobile pluviator[J]. Arabian Journal for Science and Engineering, 2014, 39(10): 6825-6834. doi: 10.1007/s13369-014-1247-8
    GADE V K, DASAKA S M. Development of a mechanized traveling pluviator to prepare reconstituted uniform sand specimens[J]. Journal of Materials in Civil Engineering, 2016, 28(2): 1-9.
    RAGHUNANDAN M, JUNEJA A, HSIUNG B. Preparation of reconstituted sand samples in the laboratory[J]. International Journal of Geotechnical Engineering, 2012, 6(1): 125-131. doi: 10.3328/IJGE.2012.06.01.125-131
    IQBAL W. Sand pluviation technique[M]. [S.l.]: LAP Lambert Academic Publishing, 2012: 1-10
    袁晓铭,曹振中,孙锐,等. 汶川8.0级地震液化特征初步研究[J]. 岩石力学与工程学报,2009,28(6): 1288-1296. doi: 10.3321/j.issn:1000-6915.2009.06.026

    YUAN Xiaoming, CAO Zhenzhong, SUN Rui, et al. Preliminary research on liquefaction characteristics of Wenchuan 8.0 earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(6): 1288-1296. doi: 10.3321/j.issn:1000-6915.2009.06.026
    徐锡伟,陈桂华,于贵华,等. 芦山地震发震构造及其与汶川地震关系讨论[J]. 地学前缘,2013,20(3): 11-20.

    XU Xiwei, CHEN Guihua, YU Guihua, et al. Seismogenic structure of Lushan earthquake and its relationship with Wenchuan earthquake[J]. Earth Science Frontiers, 2013, 20(3): 11-20.
    蒋关鲁,刘先峰,张建文,等. 高速铁路液化土地基加固的振动台试验研究[J]. 西南交通大学学报,2006,41(2): 190-196. doi: 10.3969/j.issn.0258-2724.2006.02.011

    JIANG Guanlu, LIU Xianfeng, ZHANG Jianwen, et al. Shaking table test of composite foundation reinforcement of saturated silty soil ground for high speed railway[J]. Journal of Southwest Jiaotong University, 2006, 41(2): 190-196. doi: 10.3969/j.issn.0258-2724.2006.02.011
    刘汉龙. 土动力学与土工抗震研究进展综述[J]. 土木工程学报,2012,45(4): 148-164.

    LIU Hanlong. A review of recent advances in soil dynamics and geotechnical earthquake engineering[J]. China Civil Engineering Journal, 2012, 45(4): 148-164.
    BOULANGER R W, MONTGOMERY J. Nonlinear deformation analyses of an embankment dam on a spatially variable liquefiable deposit[J]. Soil Dynamics and Earthquake Engineering, 2016, 91: 222-233. doi: 10.1016/j.soildyn.2016.07.027
    程新俊,景立平,崔杰,等. 不同场地沉管隧道振动台模型试验研究[J]. 西南交通大学学报,2017,52(6): 1113-1120. doi: 10.3969/j.issn.0258-2724.2017.06.011

    CHENG Xinjun, JING Liping, CUI Jie, et al. Research of shaking table model tests on immersed tunnels under different conitions[J]. Journal of Southwest Jiaotong University, 2017, 52(6): 1113-1120. doi: 10.3969/j.issn.0258-2724.2017.06.011
    苏雷,凌贤长,唐亮,等. 可液化场地桥梁群桩基动力反应振动台试验研究[J]. 防灾减灾工程学报,2015,35(2): 186-191.

    SU Lei, LING Xianzhang, TANG Liang, et al. Shaking table tests on dynamic responses of pile group foundations for bridge in liquefiable ground[J]. Journal of Disaster Prevention and Mitigation Engineering, 2015, 35(2): 186-191.
    冯研,蒋关鲁,陈伟志,等. 离心模型试验预测复合地基沉降的精度[J]. 西南交通大学学报,2014,49(1): 105-110. doi: 10.3969/j.issn.0258-2724.2014.01.017

    FENG Yan, JIANG Guanlu, CHEN Weizhi, et al. Accuracy of settlement prediction of composite foundation by centrifuge model tests[J]. Journal of Southwest Jiaotong University, 2014, 49(1): 105-110. doi: 10.3969/j.issn.0258-2724.2014.01.017
    涂杰文,刘红帅,汤爱平,等. 基于离心振动台的堆积型滑坡加速度响应特征[J]. 岩石力学与工程学报,2015,34(7): 1361-1369.

    TU Jiewen, LIU Hongshuai, TANG Aiping, et al. Acceleration response of colluvial landslide based on centrifugal shaking table test[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(7): 1361-1369.
    王维早,许强,郑光,等. 强降雨诱发缓倾堆积层边坡失稳离心模型试验研究[J]. 岩土力学,2016,37(1): 87-95.

    WANG Weizao, XU Qiang, ZHENG Guang, et al. Centrifugal model tests on sliding failure of gentle debris slope under rainfall[J]. Rock and Soil Mechanics, 2016, 37(1): 87-95.
    王永志,WILSON D W,KHOSRAVI M,等. 动力离心模型试验循环剪应力-剪应变反演方法对比[J]. 岩土工程学报,2016,38(2): 271-277.

    WANG Yongzhi, WILSON D W, KHOSRAVI M, et al. Evaluation of cyclic shear stress-strain using inverse analysis techniques in dynamic centrifuge tests[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 271-277.
    徐超,贾斌,罗玉珊,等. 圬工与加筋土组合式挡墙离心模型试验[J]. 同济大学学报:自然科学版,2015,43(3): 379-385.

    XU Chao, JIA Bin, LUO Yushan, et al. Centrifuge model tests of behavior of masonry and reinforced soil composite retaining wall[J]. Journal of Tongji University:Natural Science, 2015, 43(3): 379-385.
    蔡正银,张晨,黄英豪. 冻土离心模拟技术研究进展[J]. 水利学报,2017,48(4): 398-407.

    CAI Zhengyin, ZHANG Chen, HUANG Yinghao. A review on the development of geotechnical centrifuge modeling technique on frozen ground engineering[J]. Journal of Hydraulic Engineering, 2017, 48(4): 398-407.
    郑健,李育超,陈云敏. 底泥固结对污染物运移影响的超重力离心试验模拟[J]. 浙江大学学报(工学版),2016,50(1): 8-15. doi: 10.3785/j.issn.1008-973X.2016.01.002

    ZHENG Jian, LI Yuchao, CHEN Yunmin. Centrifuge test modeling of impact of sediment consolidation on contaminant transportation[J]. Journal of Zhejiang University (Engineering Science), 2016, 50(1): 8-15. doi: 10.3785/j.issn.1008-973X.2016.01.002
    安鹏,邢义川,张爱军,等. 基于离心模型试验的深厚湿陷性黄土自重湿陷性评价研究[J]. 四川大学学报(工程科学版),2016,48(6): 23-30.

    AN Peng, XING Yichuan, ZHANG Aijun, et al. Research on evaluation of self-weight collapsibility for large-thickness collapsible loess using centrifugal model test[J]. Journal of Sichuan University (Engineering Science Edition), 2016, 48(6): 23-30.
    TOBITA T, ASHINO T, REN J, et al. Kyoto University LEAP-GWU-2015 tests and the importance of curving the ground surface in centrifuge modelling[J]. Soil Dynamics and Earthquake Engineering, 2017, 113: 650-662.
    周燕国,李永刚,丁海军,等. 砂土液化后再固结体变规律表征与离心模型试验验证[J]. 岩土工程学报,2014,36(10): 1838-1845. doi: 10.11779/CJGE201410011

    ZHOU Yanguo, LI Yonggang, DING Haijun, et al. Characterization of reconsolidation volumetric strain of liquefied sand and validation by centrifuge model tests[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1838-1845. doi: 10.11779/CJGE201410011
    MOHAMMADI S D, NIKOUDEL M R, RAHIMI H, et al. Application of the dynamic cone penetrometer (DCP) for determination of the engineering parameters of sandy soils[J]. Engineering Geology, 2008, 101(3): 195-203.
  • 加载中
图(12)
计量
  • 文章访问数:  512
  • HTML全文浏览量:  353
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-10
  • 修回日期:  2018-05-15
  • 网络出版日期:  2018-05-16
  • 刊出日期:  2019-04-01

目录

    /

    返回文章
    返回