• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于EEMD-Hilbert和FWA-SVM的滚动轴承故障诊断方法

张敏 蔡振宇 包珊珊

张敏, 蔡振宇, 包珊珊. 基于EEMD-Hilbert和FWA-SVM的滚动轴承故障诊断方法[J]. 西南交通大学学报, 2019, 54(3): 633-639, 662. doi: 10.3969/j.issn.0258-2724.20170435
引用本文: 张敏, 蔡振宇, 包珊珊. 基于EEMD-Hilbert和FWA-SVM的滚动轴承故障诊断方法[J]. 西南交通大学学报, 2019, 54(3): 633-639, 662. doi: 10.3969/j.issn.0258-2724.20170435
ZHANG Min, CAI Zhenyu, BAO Shanshan. Fault Diagnosis of Rolling Bearing Based on EEMD-Hilbert and FWA-SVM[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 633-639, 662. doi: 10.3969/j.issn.0258-2724.20170435
Citation: ZHANG Min, CAI Zhenyu, BAO Shanshan. Fault Diagnosis of Rolling Bearing Based on EEMD-Hilbert and FWA-SVM[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 633-639, 662. doi: 10.3969/j.issn.0258-2724.20170435

基于EEMD-Hilbert和FWA-SVM的滚动轴承故障诊断方法

doi: 10.3969/j.issn.0258-2724.20170435
基金项目: 中央高校基本科研业务费专项资金资助项目(2682016CX031)、国家自然科学基金项目(51675450)
详细信息
    作者简介:

    张敏(1986—),女,博士,讲师,研究生导师,研究方向为智能故障诊断,E-mail:zhmzhangmin16@163.com

  • 中图分类号: TH17

Fault Diagnosis of Rolling Bearing Based on EEMD-Hilbert and FWA-SVM

  • 摘要: 为有效提取非平稳特性的滚动轴承振动信号特征,提高故障诊断效率,提出一种采用集合经验模态分解(empiricalmode decomposition,EEMD)、Hilbert变换的特征提取方法,并利用烟花算法优化支持向量机(support vector machine,SVM)分类参数的滚动轴承故障诊断方法. 通过EEMD方法将目标信号分解成若干个模态函数,采取Hilbert变换获取模态函数的瞬时频率,并对模态函数及其瞬时频率进行统计特征提取,从而实现特征的有效降维. 结果表明:信号经过EEMD-Hilbert处理后特征能有效提取,将训练集和测试集各600组数据代入烟花算法优化SVM模型得到测试集正确率为99.63%;比传统的遗传算法和粒子群算法优化模型分别提高0.4%和0.2%左右;同时收敛时间更短,验证了该算法模型的可行性与有效性.

     

  • 图 1  故障诊断流程

    Figure 1.  Flowchart for troubleshooting

    图 3  两种方法首个IMF

    Figure 3.  Two methods for the first IMF chart

    图 4  3种算法SVM参数迭代对比

    Figure 4.  Comparison of SVM parameters for the three algorithms

    图 5  3种分类结果对比

    Figure 5.  Comparison of the three classification results

    表  1  轴承故障样本

    Table  1.   Bearing failure samples

    轴承状态故障点直径/mm训练集测试集
    正常6060
    内圈故障0.1786060
    滚动体故障0.1786060
    外圈故障0.1786060
    内圈故障0.3566060
    滚动体故障0.3566060
    外圈故障0.3566060
    内圈故障0.5336060
    滚动体故障0.5336060
    外圈故障0.5336060
    下载: 导出CSV

    表  2  3种分类结果

    Table  2.   Classification results for the three methods

    模型迭代时间/s正确率/%
    EEMD_H模型282.999.43
    EEMD模型149.894.17
    EMD_H模型304.395.10
    下载: 导出CSV

    表  3  FWA、PSO、GA对SVM参数寻优

    Table  3.   FWA,PSO,and GA for SVM parameter optimisation

    算法C$\sigma $正确率/%
    PSO38.129.3598.67
    FWA35.396.8899.00
    GA57.8623.9798.67
    下载: 导出CSV

    表  4  3种分类结果

    Table  4.   Classification results for the three algorithms

    模型迭代时间/s正确率/%
    FWA14.499.63
    GA114.399.20
    PSO282.999.43
    下载: 导出CSV
  • TANDON N, CHOUDHURY A. A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings[J]. Tribology International, 1999, 32(8): 469-480.
    于德介, 程军圣, 杨宇. 机械故障诊断的Hilbert-Huang变换方法[M]. 北京: 科学出版社, 2006: 4-12
    HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A:Mathematical,Physical and Engineering Sciences, 1998, 454: 903-995.
    黄建,胡晓光,巩玉楠. 基于经验模态分解的高压短路机械故障诊断方法[J]. 中国电机工程学报,2011,31(12): 108-113.

    HUANG Jian, HU Xiaoguang, GONG Yumin. Model fault diagnosis method of high voltage short circuit based on empirical mode decomposition[J]. Proceeding of the CSEE, 2011, 31(12): 108-113.
    时培明,李庚,韩冬颖. 基于改进 EMD的旋转机械耦合故障诊断方法研究[J]. 中国机械工程,2013,24(17): 2367-2372.

    SHI Peiming, LI Geng, HAN Dongying. Study on coupling fault diagnosis method of rotating machinery based on improved EMD[J]. China Mechanical Engineering, 2013, 24(17): 2367-2372.
    WU Z, HUANG N. Ensemble empirical mode decomposition:a noise assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.
    秦娜,金炜东,黄进,等. 基于EEMD样本熵的高速列车转向架故障特征提取[J]. 西南交通大学学报,2014,49(1): 27-32.

    QIN Na, JIN Weidong, HUANG Jin, et al. Fault feature extraction of high-speed train bogies based on eemd sample entropy[J]. Journal of Southwest Jiaotong University, 2014, 49(1): 27-32.
    AlVAR M, SANCHEZ A, ARRANZ A. Fast background subtraction using static and dynamic gates[J]. Artificial Intelligence Review, 2014, 41(1): 113-128.
    何青,褚东亮,毛新华,等. 基于EEMD和 MFFOA-SVM滚动轴承故障诊断[J]. 中国机械工程,2016,27(9): 1191-1197.

    HE Qing, ZHU Dongliang, MAO Xinhua, et al. Fault diagnosis of rolling bearing based on EEMD and MFFOA-SVM[J]. China Mechanical Engineering, 2016, 27(9): 1191-1197.
    TAN Y, ZHU Y. Fireworks algorithm for optimization [C]//International Conference in Swarm Intelligence. Berlin: Springer, 2010: 355-364
    顾军华,赵燕,董瑶. 基于FWA-SVM的室内无线定位研究[J]. 河北工业大学学报,2016,45(6): 35-40.

    GU Junhua, ZHAO Yan, DONG Yao. Study on indoor wireless location based on FWA-SVM[J]. Journal of Hebei University of Technology, 2016, 45(6): 35-40.
    高宏宾,侯杰,李瑞光. 基于核主成分分析的数据流降维研究[J]. 计算机工程与应用,2013,49(11): 105-109.

    GAO Hongbin, HOU Jie, LI Ruiguang. Research on dimension reduction of data flow based on kernel principal component analysis[J]. Computer Engineering and Applications, 2013, 49(11): 105-109.
    陈维荣,关佩,邹月娴. 基于SVM的交通事件检测技术[J]. 西南交通大学学报,2011,46(1): 63-67.

    CHEN Weirong, GUAN Pei, ZOU Yuexian. A traffic event detection technology based on SVM[J]. Journal of Southwest Jiaotong University, 2011, 46(1): 63-67.
    于世飞,齐丙娟,谭红艳. 支持向量机理论与算法研究综述[J]. 电子科技大学学报,2011,40(1): 2-10.

    YU Shifei, QI Bingjuan, TAN Hongyan. Study on support vector machine theory and algorithm[J]. Journal of University of Electronic Science and Technology of China, 2011, 40(1): 2-10.
    叶林,刘鹏. 基于经验模态分解和支持向量机的短期风电功率组合预测模型[J]. 中国电机工程学报,2011,31(31): 102-108.

    YE Lin, LIU Peng. Study on short-term wind power combination forecasting model based on empirical mode decomposition and support vector machine[J]. Proceeding of the CSEE, 2011, 31(31): 102-108.
    谭营,郑少秋. 烟花算法研究进展[J]. 智能系统学报,2014(5): 515-528.

    TAN Ying, ZHENG Shaoqiu. Research progress of fireworks algorithm[J]. Journal of Intelligent Systems, 2014(5): 515-528.
    张乾, 基于振动信号的轴承状态监测和故障诊断方法研究[D]. 长沙: 中南大学, 2012
    张敏,程文明,刘娟. 复杂生产过程小故障诊断与分类方法研究[J]. 西南交通大学学报,2014,49(5): 842-847.

    ZHANG Min, CHENG Wenming, LIU Juan. Study on fault diagnosis and classification of complex production processes[J]. Journal of Southwest Jiaotong University, 2014, 49(5): 842-847.
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  600
  • HTML全文浏览量:  207
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-14
  • 修回日期:  2017-10-16
  • 网络出版日期:  2019-02-22
  • 刊出日期:  2019-06-01

目录

    /

    返回文章
    返回