Loading [MathJax]/jax/output/SVG/jax.js
  • ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于CPTU状态参数的无黏性土最大剪切模量评价方法

段伟 蔡国军 刘松玉

段伟, 蔡国军, 刘松玉. 基于CPTU状态参数的无黏性土最大剪切模量评价方法[J]. 西南交通大学学报, 2019, 54(4): 801-807. doi: 10.3969/j.issn.0258-2724.20170432
引用本文: 段伟, 蔡国军, 刘松玉. 基于CPTU状态参数的无黏性土最大剪切模量评价方法[J]. 西南交通大学学报, 2019, 54(4): 801-807. doi: 10.3969/j.issn.0258-2724.20170432
DUAN Wei, CAI Guojun, LIU Songyu. Evaluation Method of Maximum Shear Modulus of Cohesionless Soil Based on State Parameters from Piezocone Penteration Test[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 801-807. doi: 10.3969/j.issn.0258-2724.20170432
Citation: DUAN Wei, CAI Guojun, LIU Songyu. Evaluation Method of Maximum Shear Modulus of Cohesionless Soil Based on State Parameters from Piezocone Penteration Test[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 801-807. doi: 10.3969/j.issn.0258-2724.20170432

基于CPTU状态参数的无黏性土最大剪切模量评价方法

doi: 10.3969/j.issn.0258-2724.20170432
基金项目: 国家重点研发计划资助项目(2016YFC0800200);国家自然科学基金资助项目(41672294);中央高校基本科研业务费专项资金、江苏省研究生科研与实践创新计划资助项目(KYCX17_0139)
详细信息
    作者简介:

    段伟(1989—),男,博士研究生,研究方向为现代原位测试技术,E-mail:zbdxdw@163.com

    通讯作者:

    蔡国军(1977—),男,教授,博士生导师,研究方向为现代原位测试技术,E-mail:focuscai@163.com

  • 中图分类号: V221.3

Evaluation Method of Maximum Shear Modulus of Cohesionless Soil Based on State Parameters from Piezocone Penteration Test

  • 摘要: 土体最大剪切模量是动力基础设计和地震场地响应分析的重要参数,目前该参数的确定主要来源于室内试验,但室内试验值难以反应现场土层的真实情况,因而采用原位测试技术确定土体最大剪切模量的方法备受关注. 以宿迁-新沂高速公路为工程背景,利用地震波孔压静力触探(SCPTU)对现场场地进行测试,在总结已有的最大剪切模量确定方法研究成果的基础上,以实测剪切波速计算得到的最大剪切模量作为参考值,研究了孔压静力触探(CPTU)测试参数与最大剪切模量之间的关系;基于临界状态土力学理论,研究了联合CPTU测试参数和状态参数与最大剪切模量的关系. 结果表明:最大剪切模量与CPTU测试参数存在良好的相关关系,可通过锥尖阻力和孔压参数来近似估计最大剪切模量值;将状态参数作为孔隙比或孔压参数比的有效代替参数,能够同时考虑围压应力与孔隙比双重因素,所估算的最大剪切模量与参考值基本一致. 因此,CPTU原位状态参数可作为一种新方法来初步评价无黏性土的最大剪切模量.

     

  • 图 1  现场试验示意

    Figure 1.  Field test

    图 2  宿迁高速场地各参数随深度的变化曲线

    Figure 2.  Curves of each parameter with depth at the Suqian expressway site

    图 3  基于SCPTU测试资料Gmax/(1+Bq4.59qt的关系

    Figure 3.  Gmax/(1+Bq4.59 versus qt for SCPTU test data

    图 4  SCPTU测试资料Gmax/(1+ψ4.59qt的关系

    Figure 4.  Gmax/(1+ψ4.59 versus qt for SCPTU test data

    图 5  SCPTU测试的Gmax与预测值的比较

    Figure 5.  Comparison between measured SCPTU data and inferred Gmax profiles

    表  1  试验场地土层的主要物理力学性质指标

    Table  1.   Main physico-mechanical indexes of test site soils

    层号名称深度/m含水量/%液限/%标贯击数N
    填土1.011.2731.479
    粉土4.826.1229.254
    粉质砂土6.029.4828.4310
    砂土未揭穿27.7227.6424
    下载: 导出CSV
  • HICHER P Y. Elastic properties of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering,, 1996, 122(8): 641-648.
    CAI G J, PUPPALA A J, LIU S Y. Characterization on the correlation between shear wave velocity and piezocone tip resistance of Jiangsu clays[J]. Engineering Geology, 2014, 171(3): 96-103.
    TABOADA V M, ESPINOSA E, CARRASCO D, et al. Predictive equations of shear wave velocity for bay of campeche clay[C]//Offshore Technology Conference. Houston: [s.n.], 2013: 15-18
    BALDI G, BELLOTTI R, GHIONNA V N, et al. Modulus of sands from CPT and DMT[C]//Proceedings of the 12th International Conference on Soil Mechanics and Foundation Engineering. Rotterdam: [s.n.], 1989, 1: 165-170
    L’ HEUREUX J S, LONG M. Relationship between shear-wave velocity and geotechnical parameters for norwegianclays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143(6): 04017013. doi: 10.1061/(ASCE)GT.1943-5606.0001645
    MAYNE P W, RIX G J. Gmax-qc relationships for clays[J]. Geotechnical Testing Journal, 1993, 16(1): 54-60. doi: 10.1520/GTJ10267J
    LUNNE T, ROBERTSON P K, POWELL J M. Cone penetration testing in geotechnical practice[M]. London: Blackie Academic and Professional, 1997: 15-18
    蔡国军,刘松玉,童立元,等. 基于SCPTU的软土最大剪切模量测试分析研究[J]. 岩土力学,2008,29(9): 2556-2560. doi: 10.3969/j.issn.1000-7598.2008.09.045

    CAI Guojun, LIU Songyu, TONG Liyuan, et al. Evaluation of maximum shear modulus of soft clay from seismic piezocone tests (SCPTU)[J]. Rock and Soil Mechanics, 2008, 29(9): 2556-2560. doi: 10.3969/j.issn.1000-7598.2008.09.045
    YANG J, LIU X. Shear wave velocity and stiffness of sand:the role of non-plastic fines[J]. Géotechnique, 2016, 66(6): 1-15.
    赵成刚,尤昌龙. 饱和砂土液化与稳态强度[J]. 土木工程学报,2001,34(3): 90-96. doi: 10.3321/j.issn:1000-131X.2001.03.016

    ZHAO Chenggang, YOU Changlong. Liquefaction and steady state strength[J]. China Civil Engineering Journal, 2001, 34(3): 90-96. doi: 10.3321/j.issn:1000-131X.2001.03.016
    YANG J. Discussion:non-uniqueness of flow liquefaction line for loose sand[J]. Géotechnique, 2004, 54(1): 66-68. doi: 10.1680/geot.2004.54.1.66
    POLOUS S J. The steady state of deformation[J]. Journal of Geotechnical Engineering Division ASCE, 1981, 107(5): 553-562.
    BEEN K, JEFFERIES M G. A state parameter for sands[J]. Geotechnique, 1985, 35(2): 99-112. doi: 10.1680/geot.1985.35.2.99
    储亚,蔡国军,刘松玉. 基于CPTU原位测试状态参数的液化判别方法研究[J]. 地震工程学报,2014,36(4): 905-910. doi: 10.3969/j.issn.1000-0844.2014.04.0905

    CHU Ya, CAI Guojun, LIU Songyu. Study on liquefaction evaluation method based on CPTU in-situ state parameter[J]. Journal of Earthquake Engineering, 2014, 36(4): 905-910. doi: 10.3969/j.issn.1000-0844.2014.04.0905
    BEEN K, CROOKS J H A, JEFFERIES M G. Interpretation of material state from the CPT in sands and clays[C]//Penetration testing in the UK, Geotechnology Conference. Birmingham: [s.n.], 1989: 396-404
    ROBERTSON P K, JAMES K. Mitchell lecture: interpretation of in-situ tests-some insights[C]//Proc. 4th Int. Conf. on Geotechnical and Geophysical Site Characterization-ISC’4. London: [s.n.], 2012: 3-24
    PLEWES H D, DAVIES M P, JEFFERIES M G. CPT based screening procedure for evaluating liquefaction susceptibility[C]//Proceedings of the 45th Canadian Geotechnical Conference. Toronto: [s.n.], 1992: 1-9
    BEEN K, JEFFERIES M G. Towards systematic CPT interpretation[C]//Predictive Soil Mechanics Proceedings of the Wroth Memorial Symposium, St Catherine's College. Oxford: [s.n.], 1992: 121-134
    重庆交通科研设计院. 公路桥梁抗震设计细则: JTG/T B02-01—2008[S]. 北京: 人民交通出版社, 2008
    KU T, MAYNE P W, CARGILL E. Continuous-interval shear wave velocity profiling by auto-source and seismic piezocone tests[J]. Canadian Geotechnical Journal, 2013, 50(4): 382-390. doi: 10.1139/cgj-2012-0278
    JEFFERIES M G, BEEN K. Soil liquefaction: a critical state approach[M]. [S.l.]: Taylor & Francis, CRC Press, 2006: 5-14
    LONG M, DONOHUE S. Characterization of norwegian marine clays with combined shear wave velocity and piezocone cone penetration test (CPTU) data[J]. Canadian Geotechnical Journal, 2010, 47(7): 709-718. doi: 10.1139/T09-133
    SIMONINI P, COLA S. Use of piezocone to predict maximum stiffness of venetian soils[J]. Journal of Geotechnical and Geoenvironmental Engineering,ASCE, 2000, 126(4): 378-382. doi: 10.1061/(ASCE)1090-0241(2000)126:4(378)
    HARDIN B O, BLACK W L. Closure on vibration modulus of normally consolidated clay[J]. American Society of Civil Engineers, 1969, 6: 1531-1537.
    HARDIN B O. The nature of stress-strain behavior for soils[C]//In Earthquake Engineering and Soil Dynamics: Proceedings of the ASCE Geotechnical Engineering Division Specialty Conference. New York: American Society of Civil Engineers, 1978: 3-90
    JAMIOLKOWSKI M, LEROUEIL S, LO PRESTI D C F. Theme lecture:design parameters from theory to practice[J]. Proceedings,Geo-Coast, 1991, 91: 1-41.
    RIX G J, STOKOE K H. Correlation of initial tangent modulus and cone penetration resistance[C]//International Symposium on Calibration Chamber Testing. New York: Elsevier Publishing, 1991: 351-362
    BOUCKOVALAS G, KALTEZIOTIS N, SABATAKAKIS N, et al. Shear wave velocity in a very soft clay-measurement and correlations[C]//In Proceedings of the 12th International Conference on Soil Mechanics and Foundation Engineering. Rotterdam: [s.n.], 1989: 191-194
    ANAGNOSTOPOULOS A, KOUKIS G, SABATAKAKIS N, et al. Empirical correlations of soil parameters based on cone penetration tests (CPT) for greek soils[J]. Geotechnical & Geological Engineering, 2003, 21(4): 377-387.
  • 期刊类型引用(5)

    1. 王德,韩滨鹂,张天然,游智敏,李心恬. 手机信令数据的出行测度准确性分析——基于与居民出行调查数据的比较. 地理科学进展. 2024(05): 854-869 . 百度学术
    2. 王殿海,徐望,蔡正义,曾佳棋,黄宇浪. 基于手机信令数据的贝叶斯优化出行链识别. 浙江大学学报(工学版). 2024(11): 2393-2405 . 百度学术
    3. 杨飞,郭煜东,钟宇,刘振国,谭力,王成. 融合多源大数据的区域综合交通需求分析与对策. 交通运输研究. 2023(03): 48-56 . 百度学术
    4. 刘海洲,张敬宇. 基于大数据的城市轨道交通出行站外OD位置点识别方法研究. 铁道运输与经济. 2022(08): 115-122 . 百度学术
    5. 蔡先华,李澳,孙赫扬,李建邺. 运用手机信令数据和综合交通网络的出行链提取. 现代测绘. 2022(05): 18-22 . 百度学术

    其他类型引用(11)

  • 加载中
推荐阅读
考虑黏结-滑移效应的uhpc梁钢筋应力计算方法
孙永新 等, 西南交通大学学报, 2024
注浆渗透扩散的多物理场耦合数值分析
陈锋 等, 西南交通大学学报, 2024
考虑浆土应力耦合作用的劈裂注浆机理分析
秦鹏飞 等, 西南交通大学学报, 2023
Dem中砂土制样方法对浅基础承载力计算的影响
崔凯 等, 西南交通大学学报, 2023
基于颗分曲线预测土水特征曲线的 m-v 模型改进
庹建波 等, 桂林理工大学学报, 2025
基于旁压试验确定原位土体变形模量方法适宜性探讨
贾圣奥 等, 桂林理工大学学报, 2024
高模量改性沥青的零剪切黏度研究
尹应梅 等, 广东工业大学学报, 2024
Synthesize, structural inspection, stoichiometry in solution and dft calculation of some novel mixed ligand complexes: dna binding, biomedical applications and molecular docking approach
Abu-Dief, Ahmed M., JOURNAL OF MOLECULAR LIQUIDS, 2024
Critical dynamic stress and cumulative plastic deformation of calcareous sand filler based on shakedown theory
JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023
Coupled vibratory roller and layered unsaturated subgrade model for intelligent compaction
COMPUTERS AND GEOTECHNICS
Powered by
图(5) / 表(1)
计量
  • 文章访问数:  518
  • HTML全文浏览量:  285
  • PDF下载量:  21
  • 被引次数: 16
出版历程
  • 收稿日期:  2017-06-20
  • 修回日期:  2018-04-08
  • 网络出版日期:  2019-04-18
  • 刊出日期:  2019-08-01

目录

    /

    返回文章
    返回