Fuzzy Comprehensive Evaluation of Bridge Reinforcement Scheme Based on Uncertain AHP
-
摘要: 为了使桥梁加固方案的模糊评价更为可靠,针对已有评价方法中评价指标模糊处理过于简化以及层次分析法(AHP)确定指标权重主观性强的问题,确立了新的评价指标体系、评价等级与评价指标分级标准;根据模糊数学理论,构建了指标的隶属函数和桥梁加固方案二级模糊综合评价模型;运用群组决策思想,建立了基于专家可信度的不确定型AHP法来计算指标的权重区间,并引入相对优势度分析法将指标的权重区间转换为数字权重,进而对指标进行赋权;结合模糊综合评判法,建立出基于不确定型AHP法的模糊综合评价模型,并运用于工程实例的计算与分析.研究结果表明:方法适用于桥梁加固方案的模糊评价,与工程实际相吻合,具有较高的可行性与合理性.Abstract: To enable the fuzzy evaluation of the bridge reinforcement scheme to be more reliable and solve the problem that the fuzzy process of the evaluation index was too simplistic and the analytic hierarchy process(AHP)had a strong subjectivity when determining the weight of the evaluation index in the existing evaluation methods, a new evaluation index system, evaluation grade, and evaluation index classification standard were established. According to the fuzzy mathematics theory, the membership function of the index and the two-level fuzzy comprehensive evaluation model of the bridge reinforcement scheme were constructed. Based on the group decision making principle, an uncertain AHP method based on expert credibility was established to calculate the weight interval of the evaluation index. The relative weight analysis method was used to convert the weight range of the index into digital weight, and then the evaluation index was weighted. Further, combined with the fuzzy comprehensive evaluation method, a fuzzy comprehensive evaluation model based on the uncertain AHP method was established and applied to the calculation and analysis of engineering examples. The results show that the method is suitable for the fuzzy evaluation of a bridge reinforcement scheme, which is consistent with engineering practice and has high feasibility and rationality.
-
表 1 桥梁加固方案评价指标体系
Table 1. Evaluation index system of bridge reinforcement scheme
1级指标 2级指标 结构功能可靠性 安全性要求满足程度 耐久性要求满足程度 适用性要求满足程度 美观性要求满足程度 经济合理性 加固所需费用经济性 后期养护费用经济性 技术可靠性 加固技术的适用性 加固技术的先进性 加固技术的成熟性 施工过程可靠性 施工工艺的适用性 施工工艺的先进性 施工工艺的成熟性 施工过程的安全性 对交通的影响程度 对环境的影响程度 表 2 桥梁加固方案评价等级
Table 2. Evaluation grade of bridge reinforcement scheme
等级 评分值 对应准则 1级 90~100 优级,预计方案实施后桥梁能很好的满足设计要求,获得很好的社会经济效益. 2级 75~90 良好级,预计方案实施后桥梁的结构功能可靠性明显提高,满足设计要求,其他方面较好的满足要求. 3级 60~75 合格级,预计方案实施后桥梁结构功能可靠性有较大提高,不需再加固,但需要小修,其他方面基本满足要求. 4级 45~60 不合格级,预计方案实施后桥梁不需要再加固,但需要中修,其他方面不满足要求. 5级 < 45 劣级,预计方案实施后桥梁结构功能可靠性基本无改善,需要再进行加固,其他方面不满足要求. 表 3 评价指标分级标准
Table 3. Classification criteria of evaluation index
分类指标 基本指标 评价指标分级标准 1级 2级 3级 4级 5级 结构功能可靠性E1 安全性要求满
足程度e11显著高于设计要求 较高于设计要求 基本合格 较低于设计要求 显著低于设计要求 耐久性要求满
足程度e12显著高于设计要求 较高于设计要求 基本合格 较低于设计要求 显著低于设计要求 适用性要求满
足程度e13显著高于要求 较高于要求 基本满足要求 较低于要求 显著低于要求 美观性要求满
足程度e14非常美观 美观性良好 美观性一般 美观性较差 美观性很差 经济合理性E2 加固所需费用
经济性e21非常经济 比较经济 一般 较差 很不经济 后期养护费用
经济性e22非常经济 比较经济 一般 较差 很不经济 技术可靠性E3 加固技术的适用性e31 适用性很好 适用性较好 基本适用于项目 适用性较差 适用性很差 加固技术的
先进性e32非常先进 比较先进 不太先进 比较落后 很落后 加固技术的成
熟性e33非常成熟 比较成熟 不太成熟 较差 很不成熟 施工过程
可靠性E4施工工艺的适用性e41 适用性很好 适用性较好 基本适用于项目 适用性较差 适用性很差 施工工艺的
先进性e42非常先进 比较先进 不太先进 比较落后 很落后 施工工艺的
成熟性e43非常成熟 比较成熟 不太成熟 较差 很不成熟 施工过程的
安全性e44显著高于要求 较高于要求 基本合格 较低于要求 显著低于要求 对交通的影
响程度e45不中断交通 部分中断可通行 短时间中断 较短时间中断 较长时间中断 对环境的影
响程度e46显著高于要求 较高于要求 基本合格 较低于要求 显著低于要求 表 4 加固方案评价矩阵因素
Table 4. Evaluation matrix of reinforcement scheme
指标 梁底粘贴钢板法 梁底粘贴预应力碳纤维板 1级 2级 3级 4级 5级 1级 2级 3级 4级 5级 e11 0 0.9 0.1 0 0 0.1 0.9 0 0 0 e12 0.3 0.7 0 0 0 0.4 0.6 0 0 0 e13 0 0.6 0.4 0 0 0 0.9 0.1 0 0 e14 0 0.9 0.1 0 0 0 1.0 0 0 0 e21 0.5 0.5 0 0 0 0.1 0.9 0 0 0 e22 0 0.6 0.4 0 0 0 0.7 0.3 0 0 e31 0.1 0.9 0 0 0 0.5 0.5 0 0 0 e32 0 0.4 0.6 0 0 0 0.8 0.2 0 0 e33 0.85 0.15 0 0 0 0.5 0.5 0 0 0 e41 0 0.85 0.15 0 0 0.4 0.6 0 0 0 e42 0 0.55 0.45 0 0 0.15 0.85 0 0 0 e43 0.7 0.3 0 0 0 0.3 0.7 0 0 0 e44 0 1.0 0 0 0 0.2 0.8 0 0 0 e44 0 0.2 0.8 0 0 0 0 0.65 0.35 0 e46 0 0.7 0.3 0 0 0 0.8 0.2 0 0 表 5 部分评价指标权重
Table 5. Weights of some evaluation indices
专家可信度 指标权重区间 结构功能可靠性 经济合理性 技术可靠性 施工过程可靠性 专家A(0.258 4) (0.480 4,0.532 8) (0.103 2,0.130 8) (0.197 9,0.231 3) (0.1575,0.1901) 专家B(0.245 7) (0.488 8,0.539 4) (0.111 0,0.135 7) (0.195 1,0.225 8) (0.146 5,0.175 3) 专家C(0.237 1) (0.462 3,0.533 3) (0.083 9,0.118 3) (0.217 6,0.269 3) (0.161 2,0.196 5) 专家D(0.258 8) (0.468 3,0.507 3) (0.098 8,0.119 1) (0.217 3,0.244 9) (0.164 0,0.187 6) 基于专家可信度的权重区间 (0.475 0,0.528 0) (0.099 4,0.126 0) (0.206 9,0.242 5) (0.157 3,0.187 3) 指标权重向量W0 0.372 1 0.146 7 0.267 9 0.213 3 专家可信度 指标权重区间 安全性要求满足程度 耐久性要求满足程度 适用性要求满足程度 美观性要求满足程度 专家A(0.264 9) (0.527 7,0.6072) (0.112 7,0.140 8) (0.197 7,0.278 4) (0.070 6,0.098 1) 专家B(0.255 6) (0.504 7,0.609 4) (0.101 3,0.129 0) (0.201 1,0.337 8) (0.063 3,0.093 7) 专家C(0.225 0) (0.481 9,0.548 4) (0.125 8,0.147 2) (0.230 5,0.300 1) (0.078 8,0.104 9) 专家D(0.254 5) (0.489 2,0.592 4) (0.100 1,0.140 2) (0.195 7,0.330 3) (0.082 3,0.103 4) 基于专家可信度的权重区间 (0.501 7,0.590 8) (0.109 5,0.139 1) (0.205 5,0.311 7) (0.073 5,0.099 8) 指标权重向量W1 0.363 5 0.203 8 0.274 3 0.158 4 表 6 评价指标权重值
Table 6. Weights values of the evaluation index
权重向量 指标权重向量值 W0 (0.372 1,0.146 7,0.267 9,0.213 3) W1 (0.363 5,0.203 8,0.274 3,0.158 4) W2 (0.699 8,0.300 2) W3 (0.490 8,0.193 2,0.316 0) W4 (0.190 7,0.111 3,0.156 2,0.246 4,
0.117 3,0.178 1)表 7 评价结果
Table 7. Evaluation results
加固方案 结果向量 评价结果向量值 梁底粘贴
钢板法U1 (0.061 1,0.777 0,0.161 9,0,0) U2 (0.349 9,0.530 1,0.120 0,0,0) U3 (0.317 7,0.566 4,0.115 9,0,0) U4 (0.109 3,0.664 7,0.226 0,0,0) N0 (0.182 5,0.660 4,0.157 1,0,0) 梁底粘贴碳
纤维板法U1 (0.117 9,0.854 7,0.027 4,0,0) U2 (0.070 0,0.840 0,0.090 0,0,0) U3 (0.403 4,0.558 0,0.038 6,0,0) U4 (0.189 1,0.658 0,0.111 9,
0.041 0,0)N0 (0.202 5,0.731 1,0.057 6,
0.008 8,0) -
马建,孙守增,杨琦,等. 中国桥梁工程学术研究综述2014[J]. 中国公路学报,2014,27(5): 1-96. doi: 10.3969/j.issn.1001-7372.2014.05.001MA Jian, SUN Shouzeng, YANG Qi, et al. Review on China’s bridge engineering research:2014[J]. China Journal of Highway and Transport, 2014, 27(5): 1-96. doi: 10.3969/j.issn.1001-7372.2014.05.001 姜禹,郝伟. 基于赋权关联度法的桥梁加固方案优选研究[J]. 铁道科学与工程学报,2016,13(7): 1318-1322.JIANG Yu, HAO Wei. Research on bridge reinforcement scheme optimization based on empowerment relational degree[J]. Journal of Railway Science and Engineering, 2016, 13(7): 1318-1322. 王永平,张宝银,张树仁. 桥梁使用性能模糊评估专家系统[J]. 中国公路学报,1996,9(2): 62-67.WANG Yongping, ZHANG Baoyin, ZHANG Shuren. Expert system for comprehensive assessment to bridge service property using fuzzy theory[J]. China Journal of Highway and Transport, 1996, 9(2): 62-67. 林拥军,邱秀姣,葛宇东. 砌体结构安全性模糊层次综合评价方法[J]. 西南交通大学学报,2016,51(6): 1214-1221. doi: 10.3969/j.issn.0258-2724.2016.06.023LIN Yougjun, QIU Xiujiao, GE Yudong. Fuzzy comprehensive evaluation method for masonry structure safety[J]. Journal of Southwest Jiaotong University, 2016, 51(6): 1214-1221. doi: 10.3969/j.issn.0258-2724.2016.06.023 张鹏. 桥梁加固方案的层次分析优选法[J]. 公路交通科技,2006,23(7): 92-95. doi: 10.3969/j.issn.1002-0268.2006.07.022ZHANG Peng. Choice of optimum scheme for bridge strengthening by using analytic hierarchy process[J]. Journal of Highway and Transportation Research and Development, 2006, 23(7): 92-95. doi: 10.3969/j.issn.1002-0268.2006.07.022 杨雅勋,李子春,李子青. 基于组合权值灰关联法的旧桥加固方案评价[J]. 长安大学学报 (自然科学版),2007,27(5): 62-65. doi: 10.3321/j.issn:1671-8879.2007.05.014YANG Yaxun, LI Zichun, LI Ziqing. Evaluation on reinforcement scheme of existing bridges based on combination-weight-gray-relation method[J]. Journal of Chang’ an University (Natural Science Edition), 2007, 27(5): 62-65. doi: 10.3321/j.issn:1671-8879.2007.05.014 边晶梅,朱浮声,白泉. 组合赋权简化ELECT RE法优选桥梁加固方案[J]. 公路交通科技,2008,25(12): 132-137. doi: 10.3969/j.issn.1002-0268.2008.12.026BIAN Jingmei, ZHU Fusheng, BAI Quan. Opti mization of bridge reinforcement scheme with si simplified electre method based on combination weighting[J]. Journal of Highway and Transporta tion Research and Development, 2008, 25(12): 132-137. doi: 10.3969/j.issn.1002-0268.2008.12.026 徐泽水. 关于层次分析中几种标度的模拟评估[J]. 系统工程理论与实践,2000,20(7): 58-62. doi: 10.3321/j.issn:1000-6788.2000.07.012XU Zeshui. A simulation-based evaluation of several scales in the analytic hierarchy process[J]. Systems Engineering-Theory & Practice, 2000, 20(7): 58-62. doi: 10.3321/j.issn:1000-6788.2000.07.012 张彩然,朱尔玉,程京甫. 不确定型AHP在单轨桥梁状态评估中的应用[J]. 北京交通大学学报,2010,34(6): 16-20. doi: 10.3969/j.issn.1673-0291.2010.06.004ZHANG Cairan, ZHU Eryu, CHENG Jingfu. Application of uncertain type of AHP on monorail bridge condition assessment[J]. Journal of Beijing Jiaotong University, 2010, 34(6): 16-20. doi: 10.3969/j.issn.1673-0291.2010.06.004 中华人民共和国交通运输部. 公路桥梁加固设计规范: JTG/T J22—2008[S]. 北京: 人民交通出版社, 2008 中华人民共和国交通部. 公路桥涵养护规范: JTG H1l—2004[S]. 北京: 人民交通出版社, 2004 中华人民共和国交通运输部. 公路桥梁技术状况评定标准: JTG/T H21—2011[S]. 北京: 人民交通出版社, 2011 刘俊娟,王炜,程琳. 基于梯形隶属函数的区间数模糊评价方法[J]. 系统工程与电子技术,2009,31(2): 390-392. doi: 10.3321/j.issn:1001-506X.2009.02.032LIU Junjuan, WANG Wei, CHENG Lin. Interval number fuzzy evaluation based on trapezoid subordinate function[J]. Systems Engineering and Electronics, 2009, 31(2): 390-392. doi: 10.3321/j.issn:1001-506X.2009.02.032 潘仁飞,邹乐乐,侯运炳. 基于专家可信度的不确定型AHP方法及其应用[J]. 系统工程,2008,26(10): 101-106. doi: 10.3969/j.issn.1001-4098.2008.10.020PAN Renfei, ZOU Lele, HOU Yunbing. The method of uncertain AHP based on expert credibility and Its application[J]. Systems Engineering, 2008, 26(10): 101-106. doi: 10.3969/j.issn.1001-4098.2008.10.020 许先云,杨永清. 不确定AHP判断矩阵的一致性逼近与排序方法[J]. 系统工程理论与实践,1998,18(2): 19-22. doi: 10.3321/j.issn:1000-6788.1998.02.004XU Xianyun, YANG Yongqing. The consistency approximation and weight calculation method of the judgement matrix in the uncertain type of AHP[J]. Systems Engineering-Theory & Practice, 1998, 18(2): 19-22. doi: 10.3321/j.issn:1000-6788.1998.02.004 张吉军. 区间数的排序方法研究[J]. 运筹与管理,2003,12(3): 18-22. doi: 10.3969/j.issn.1007-3221.2003.03.005ZHANG Jijun. Research on method for ranking interval numbers[J]. Operations Research and Management Science, 2003, 12(3): 18-22. doi: 10.3969/j.issn.1007-3221.2003.03.005 徐泽水. 模糊互补判断矩阵排序的一种算法[J]. 系统工程学报,2001,16(4): 311-314. doi: 10.3969/j.issn.1000-5781.2001.04.012XU Zeshui. Algorithm for priority of fuzzy complementary judgement matrix[J]. Journal of Systems Engineering, 2001, 16(4): 311-314. doi: 10.3969/j.issn.1000-5781.2001.04.012