Buckling Analysis for Tapered Pile Considering Self-Weight of Pile
-
摘要: 为了研究桩身特性对楔形桩稳定屈曲性状的影响,基于考虑桩身自重的桩-土体系尖点突变模型,对楔形桩的第一类稳定问题进行了分析;通过确定桩-土体系的势函数和分岔集方程,建立桩-土体系的尖点突变模型并导出桩-土体系失稳条件,得到了楔形桩的屈曲临界荷载;应用能量法原理及瑞利-里兹法计算楔形桩的屈曲临界荷载,验证突变理论计算结果的可靠性;通过算例分析了楔形桩的桩身自重和楔形桩桩径变化对屈曲临界荷载的影响.研究结果表明:当桩身埋置率从0增加到0.4时,考虑桩身自重后楔形桩和等截面桩的临界荷载减小值与不考虑桩身自重下临界荷载的比值分别减小了42.82%和75.27%;其他条件相同时,楔形桩的楔形锥角越大,稳定性越好;当无量纲桩长趋于0时,桩顶自由、桩端嵌固和桩端铰接条件下楔形桩稳定计算长度分别趋于0和无穷大.Abstract: To study the effect of pile shape on the buckling behaviour of a tapered pile, the first-type stability of the tapered pile was analyzed based on the cusp catastrophe model of the pile-soil system with considering the self-weight of the pile. By determining the potential function and the equations of the bifurcation sets of the pile-soil system, the cusp catastrophe model was established, and the instability condition of the pile-soil system was derived based on the cusp catastrophe theory and the principles of the energy method. Meanwhile, the buckling load of the tapered pile was determined by the Rayleigh-Ritz method, and the reliability of the results from the cusp catastrophe theory was verified. Finally, the influences of the self-weight of the tapered pile and the variation ratio of pile diameters on the buckling load were analyzed. The result shows that when h/L increases from 0 to 0.4, the ratio of the buckling load reduction of the tapered pile with considering the self-weight of the pile to the buckling load without considering the self-weight of the pile decreases to 42.82%, and the ratio of the buckling load reduction for an equal-diameter pile with considering the self-weight to the buckling load without considering the self-weight decreases to 75.27%. Under the identical conditions, the greater the tapering angle of the tapered pile, the better the stability. When the dimensionless length of the pile tends to be zero, the calculation length of a tapered pile with a free end and a fixed end tend to be zero and that of a tapered pile with a free end and a hinged end tend to be infinite.
-
Key words:
- buckling analysis /
- tapered pile /
- cusp catastrophe theory /
- buckling load /
- self-weight of pile
-
NORLUND R L. Bearing capacity of piles in cohesionless soils[J]. Journal of the Soil Mechanics and Foundations Division, 1963, 89:1-34. WEI J Q, NAGGAR M H E. Experimental study of axial behavior of taped piles[J]. Canadian Geotechnical Journal, 1998, 35:641-654. RYBNIKOY A M. Experimental investigations of bearing capacity of bored-cast-in-place tapered piles[J]. Soil Mechanics and Foundation Engineering, 1990, 27(2):48-52. 蒋建平,高广运,顾宝和. 扩底桩、楔形桩、等直径桩对比试验研究[J]. 岩土工程学报,2003,25(6):764-766. JIANG Jianping, GAO Guangyun, GU Baohe. Comparison of belled tapered pile and equal-diameter pile[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(6):764-766. 鹿文东,玉立荣. 锥形钻孔灌注桩作用机理与承载力试验研究[J]. 地基基础工程,2002,12(3):36-41. LU Wendong, YU Lirong. Experiment study of mechanism of action and bearing capacity of tapered bored concerte pile[J]. Foundation Engineering, 2002, 12(3):36-41. 刘杰,何杰,闵长青. 楔形桩与圆柱形桩复合地基承载性状对比研究[J]. 岩土力学,2010,31(7):2202-2206. LIU Jie, HE Jie, MIN Changqing. Contrast research of bearing behavior for composite foundation with taped piles and cylindrical piles[J]. Rock and Soil Mechanics, 2010, 31(7):2202-2206. DAVISSON M T, ROBINSON K E. Bending and buckling of particlly embedded piles[C]//Proceedings 6th International Conference on Soil Mechanics and Foundation Engineering. Toronto:University of Toronto Press, 1985:243-246. 铁道部第三勘测设计院. 铁路工程设计技术手册[M]. 北京:人民铁道出版社,1983:114-118. TOAKLEY A. Buckling loads for elastically supported struts[J]. Journal of the Engineering Mechanics Division, ASCE, 1965, 91(6):205-231. THOM R. Structural stability and morphogenesis[M]. Washington:W A Benjamin, 1978:629-632. 张远芳,崔树琴. 基于尖点突变理论的端承桩竖向承载力分析[J]. 岩土力学,2007,28(增刊):901-904. ZHANG Yuanfang, CUI Shuqin. Analysis on vertical bearing capacity of end-bearing pile foundation based on the catastrophe theory[J]. Rock and Soil Mechanics, 2007, 28(Sup.):901-904. 王新泉,陈永晖,刘汉龙. 基于尖点突变理论的基桩极限承载力判定及预测[J]. 河海大学学报:自然科学版,2008,36(2):248-252. WANG Xinquan, CHEN Yonghui, LIU Hanlong. Determining and forecasting ultimate bearing capacity of pile based on cusp catastrophe theory[J]. Journal of Hohai University:Natural Sciences, 2008, 36(2):248-252. 赵正跃,项成龙. 突变理论在环境预测中的应用[J]. 中国坏境检测,2002,18(4):59-60. ZHAO Zhenglong, XIANG Chenglong. The application of catastrophe theory in the environmental forecast[J]. Environmental Monitoring in China, 2002, 18(4):59-60. 尚新生,邵生俊,谢定义. 突变理论在砂土液化分析中的应用[J]. 岩石力学与工程学报,2004,23(1):35-38. SHANG Xinsheng, SHAO Shengjun, XIE Dingyi. Application of catastrophe theory to sand liquefaction analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(1):35-38. 张亚平,张起森. 尖点突变理论在交通流预测中的应用[J]. 系统工程学报,2000,15(3):272-276. ZHANG Yaping, ZHANG Qisen. The application of cusp catastrophe theory in the traffic flow forecast[J]. Journal of Systems Engineering, 2000, 15(3):272-276. 桑博德. 突变理论入门[M]. 凌复华译. 上海:上海科学技术文献出版社,1983:32-45. 中交公路规划设计院有些公司. JTG D63-2007公路桥涵地基与基础设计规范[S]. 北京:人民交通出版社,2007.
点击查看大图
计量
- 文章访问数: 517
- HTML全文浏览量: 57
- PDF下载量: 49
- 被引次数: 0