Study of Train Running Performance under Wave Load for Cross-Sea Bridge
-
摘要: 针对平潭海峡大桥所处海洋环境复杂恶劣、波浪会影响列车的安全性和舒适性问题,基于车-桥耦合动力仿真方法,利用自主研发的桥梁有限元软件BANSYS(bridge analysis system),分析了极端波浪荷载作用下车辆和桥梁的动力响应,讨论了波浪荷载重现期、车速、水深和桥墩刚度等因素的影响.研究结果表明:波浪荷载对车桥系统的响应影响显著,当波浪荷载重现期为50 a时,桥梁跨中横向位移超限;当波浪荷载较大时,波浪对列车走行性起主要控制作用,当波浪荷载较小时,车桥系统的动力响应对车速较为敏感;低桩承台方案可有效降低波浪荷载作用下桥梁和车辆的动力响应;桥墩基础采用常用的不同标号的混凝土对行车安全性和舒适性影响较小,车辆最大横向加速度相对变化幅值最高达3%.Abstract: The Pingtan Strait Bridge is in a complex and harsh marine environment. The wave loads could affect traffic safety and comfortability.Based on the numerical simulation for coupling vibration of the rail vehicle-bridge system,our software-BANSYS (bridge analysis system) was adopted for analysing the dynamic responses of vehicles and the bridge under extreme wave loads.To estimate the return periods of the wave load, velocities, water depths, stiffness of bridge foundations, and the responses of vehicles and the bridge were analysed.The results show that wave loads have a significant impact on the responses of the vehicle-bridge system; when the return period of the wave load is 50 years, the lateral displacement of the midspan exceeds the standard limit. The wave loads play a major role in the train running performance; with large wave loads, the dynamic response of the vehicle-bridge system is more sensitive to vehicle speed than with small wave loads. The scheme of low pile cap can effectively reduce the dynamic response of the bridge and vehicles under wave loads. The different frequently-used concrete strengths of the bridge foundations have little influence on traffic safety and comfortability, and the relative change in the maximum acceleration of vehicles is up to 3%.
-
杨进先,胡勇. 跨海大桥桥渡设计关键技术探讨[J]. 桥梁建设,2010,40(5):60-63. YANG Xianjin, HU Yong. Discussion on key technology of bridge crossing design of cross sea bridge[J]. Bridge Construction, 2010, 40(5):60-63. 钟山. 考虑流固耦合效应的波浪作用下桥墩动力响应分析[D]. 重庆:重庆交通大学,2013. 刘斌. 波浪荷载作用下深水桥梁的振动控制[D]. 成都:西南交通大学,2013. 王连宾. 波浪荷载作用下车桥系统动力响应及行车安全性分析[D]. 北京:北京交通大学,2012. CUOMO G, SHIMOSAKO K I, TAKAHASHI S. Wave-in-deck loads on coastal bridges and the role of air[J]. Coastal Engineering, 2009, 56(8):793-809. BOZORGNIA M, LEE J J, RAICHLEN F. Wave structure interaction:role of entrapped air on wave impact and uplift forces[J]. Coastal Engineering Proceedings, 2010, 1(32):57-59. DO T Q, LINDTT W V D, COX D T. Performance-based design methodology for inundated elevated coastal structures subjected to wave load[J]. Engineering Structures, 2016, 117:250-262. 胡勇,雷丽萍,杨进先. 跨海桥梁基础波浪(流)力计算问题探讨[J]. 水道港口,2012,33(2):101-105. HU Yong, LEI Liping, YANG Jinxian. Discussion on the calculation of wave (current) force of cross sea bridge[J]. Waterway and Harbor, 2012, 33(2):101-105. 李永乐. 风-车-桥系统非线性空间耦合振动研究[D]. 成都:西南交通大学,2003. 中交第一航务工程勘探设计院有限公司. JTS 145-2015港口与航道水文规范[S]. 北京:人民交通出版社,2015. 俞聿修. 随机波浪及其工程应用[M]. 大连:大连理工大学出版社,2010:407-415. 李永乐,赵凯,蔡宪棠. 桥梁基础刚度有限元模拟的正交三梁模型[J]. 桥梁建设,2010,40(6):17-20,36. LI Yongle, ZHAO Kai, CAI Xiantang, Three-orthogonal-beam model for finite element simulation of bridge foundation stiffness[J]. Bridge Construct. 2010, 40(6):17-20,36. 任尊松. 车辆系统动力学[M]. 北京:中国铁道出版社,2007:171-172. ZHAI Wanming, WANG Kaiyun, CAI Chengbiao. Fundamentals of vehicle-track coupled dynamics[J]. Vehicle System Dynamics, 2009, 47(11):1349-1376. LI Yongle, QIANG Shizhong, LIAO Haili, et al. Dynamics of wind-rail vehicle-bridge systems[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2005, 93(6):483-507. 国家标准局. GB/T 5599-1985铁道车辆动力学性能评定和试验鉴定规范[S]. 北京:中国标准出版社社,1985. 铁道第三勘察设计院. TB 10002.1-2005铁路桥涵设计基本规范[S]. 北京:中国铁道出版社,2005.
点击查看大图
计量
- 文章访问数: 460
- HTML全文浏览量: 93
- PDF下载量: 43
- 被引次数: 0