Analysis of Mechanical Characteristics of Degradation Railway Ballast by Direct Shear Test
-
摘要: 为探究劣化道砟力学特性及其循环利用机理,分别针对清洗后掺加不同比例新道砟的劣化道砟,结合洛杉矶磨耗试验仪和应变控制式直剪仪,开展了不同比例新旧道砟混合体的直剪试验,探讨了不同垂压(50、100、200 kPa)下不同比例新旧道砟混合体应力应变特征.研究结果表明:劣化道砟抗剪强度随新道砟含量增多而增大,如100 kPa垂压下,新道砟含量为50%和100%的样本抗剪强度分别为143.4 kPa和176.7 kPa,比劣化道砟抗剪强度分别提高了24.0%和52.9%;劣化道砟剪胀现象随新道砟含量增多而越不明显,如100 kPa垂压下,新道砟含量为50%和100%的样本最大剪胀量分别为9.842 mm和7.969 mm,比劣化道砟最大剪胀量分别降低了25.8%和39.9%;清洗后劣化道砟力学性能与新道砟差别较小,在一定条件下可与新道砟混合重复使用.Abstract: In order to study the mechanical characteristics and reuse of a washed recycled ballast, a Los Angeles abrasion tester and strain-controlled direct shear apparatus were used in experiments to investigate the stress-strain characteristics of recycled ballast with different proportions of fresh ballast under different normal stresses (50, 100, and 200 kPa). Based on the experimental results, the mechanical features of the ballast were discussed. The results show that ballast strength increased with the proportion of fresh ballast. The strength of mixtures with 50% and 100% fresh ballast were 143.4 and 176.7 kPa, respectively, under normal stress of 100 kPa; an increase of 24.0% and 52.9%, respectively, compared to pure recycled ballast. The shear dilatation of the mixture also increased with the proportion of fresh ballast. For 50% and 100% fresh ballast samples, the values are 9.842 mm and 7.969 mm, respectively, under normal stress of 100 kPa; a decrease of 25.8% and 39.9%, respectively, compared to pure recycled ballast. There was a small difference in mechanical characteristics between washed recycled ballast and fresh ballast, and the washed recycled ballast can be reused with fresh ballast under certain conditions.
-
BENEDETTO A, TOSTI F, CIAMPOLIL B, et al. Railway ballast condition assessment using ground-penetrating radar-an experimental, numerical simulation and modelling development[J]. Construction and Building Materials, 2017, 140:508-520. SELIG E T, WATERS J M. Track geotechnology and substructure management[M].[S.l.]:Thomas Telford, 1994:8-9. ANGELO D G, THOM N, PRESTI D L. Bitumen stabilized ballast:a potential solution for railway track-bed[J]. Construction and Building Materials, 2016, 124:118-126. 井国庆,黄红梅,施晓毅,等. 道砟尖角折断的三轴压缩试验与离散元数值分析[J]. 西南交通大学学报,2017,52(2):216-221. JING Guoqing, HUANG Hongmei, SHI Xiaoyi, et al. Triaxial test and DEM analysis of ballast aggregate with angularity breakage[J]. Journal of Southwest Jiaotong University, 2017, 52(2):216-221. INDRARATNA B, SHAHIN M A, SALIM W. Use of geosynthetics for stabilizing recycled ballast in railway track substructures[C]//Proceedings of NAGS2005/GRI 19 Cooperative Conference.[S.l.]:North American Geosynthetics Society, 2005:1-15. INDRARATNA B, NIMBALKAR S, RUJIKIATKAMJORN C. Enhancement of rail track performance through utilisation of geosynthetic inclusions[J]. Geotech. Eng. Jl. of the SEAGS & AGSSEA, 2014, 45(1):17-27. 杨荣山,万章博,刘学毅,等. CRTS Ⅰ型双块式无砟轨道冬季温度场试验[J]. 西南交通大学学报,2015,50(3):454-460.YANG Rongshan, WAN Zhangbo, LIU Xueyi, et al. Temperature field test of CRTS Ⅰ twin-block ballastless track in winter[J]. Journal of Southwest Jiaotong University, 2015, 50(3):454-460. INDRARATNA B, TENNAKOON N C, NIMBALKAR S S, et al. Behaviour of clay-fouled ballast under drained triaxial testing[J]. Geotechnique:International Journal of Soil Mechanics, 2013, 63(5):410-419. 徐亚宁,苏启常. 信号与系统[M]. 北京:电子工业出版社,2016:40-50. HUDSON A, WATSON G, LE PEN L, et al. Remediation of mud pumping on a ballasted railway track[J]. Procedia Engineering, 2016, 143:1043-1050. ANDREWS J, PRESCOTT D, DE ROZIÈRES F. A stochastic model for railway track asset management[J]. Reliability Engineering & System Safety, 2014, 130:76-84. 张志明,范钟秀. 气象学与气候学[M]. 北京:中国水利水电出版社,1995:38-44. DERSCH M S, TUTUMLUER E, PEELER C T, et al. Polyurethane coating of railroad ballast aggregate for improved performance[C]//Proceedings of the 2010 Joint Rail Conference. Urbana:Rail Transportation Division, 2010:337-342. 孟庆林,李宁,夏磊. 建筑外饰面表面污染后太阳辐射吸收系数的测试与修正[J]. 建筑技术,2010,41(11):1043-1045.MENG Qinglin, LI Ning, XIA Lei. Testing and amendment of solar radiation absorption coefficient in building external finishes[J]. Architecture Technology, 2010, 41(11):1043-1045. DONOVAN H, ENG P. Recycled aggregate and geosynthetic study-City of Edmonton[C]//2011 Annual Conference of the Transportation Association of Canada Edmonton. Alberta:[s,n], 2011:1-9. 刘文燕,耿耀明. 混凝土表面太阳辐射吸收率试验研究[J]. 混凝土与水泥制品,2004(4):8-11.LIU Wenyan, GENG Yaoming. Experimental study of the solar absorption coefficient on the concrete surface[J]. China Concrete and Cement Products, 2004(4):8-11. LARSSON O. Climate related thermal actions for reliable design of concrete structures[D]. Lund:Lund University, 2012. 井国庆. 铁路有砟道床[M]. 北京:中国铁道出版社,2012:196-199. 肖宏,高亮,侯博文. 基于离散元分析的高速铁路桥上轨枕选型[J]. 西南交通大学学报,2015,50(5):811-816. XIAO Hong, GAO Liang, HOU Bowen. 3D discrete element analysis of selection of sleeper types on high-speed railway bridge[J]. Journal of Southwest Jiaotong University, 2017, 52(2):216-221. 苑中显,陈永昌. 工程传热学[M]. 北京:科学出版社,2012:72-74. MORATA M, SABORIDO C. Recycled aggregates with enhanced performance for railways track bed and form layers[J]. Journal of Sustainable Metallurg, 2017, 3(2):322-335. 中华人民共和国国家标准. GB50176-93民用建筑热工设计规范[S]. 北京:中国建筑工业出版社,1993. 朱伯芳. 大体积混凝土施工过程中受到的日照影响[J]. 水力发电学报,1999(3):35-41.ZHU Bofang. Influence of solar radiation on temperature of mass concrete in the process of construction[J]. Journal of Hydroelectric Engineering, 1999(3):35-41. European Committee for Standardization. BS EN 13450-2013 European railway ballast specification[S]. London:British Standards Institution, 2013. INDRARATNA B, SALIM W. Deformation and degradation mechanics of recycled ballast stabilised with geosynthetics[J]. Soils and Foundations, 2003, 43(4):35-46. HAN J, THAKUR J K. Sustainable roadway construction using recycled aggregates with geosynthetics[J]. Sustainable Cities and Society, 2015, 14:342-350. INDRARATNA B, NIMBALKAR S, CHRISTIE D. The performance of rail track incorporating the effects of ballast breakage, confining pressure and geosynthetic reinforcement[C]//Proceedings of the 8th International Conference on the Bearing Capacity of Roads, Railways, and Airfields. London:Talor and Francis Group, 2009:5-24. SUSSMANN T, RUEL M, CHRISMER S. Source of ballast fouling and influence considerations for condition assessment criteria[J]. Transportation Research Record:Journal of the Transportation Research Board, 2012:87-94. INDRATNA B, SHAHIN M A, SALIM W. Stabilising granular media and formation soil using geosynthetics with special reference to railway engineering[J]. Ground Improvement, 2007, 11(1):27-44. LIU J, WANG P, LIU J. Macro-and micro-mechanical characteristics of crushed rock aggregate subjected to direct shearing[J]. Transportation Geotechnics, 2015, 2:10-19. INFANTE D J U, MARTINEZ G M A, ARRUA P A, et al. Shear strength behavior of different geosynthetic reinforced soil structure from direct shear test[J]. International Journal of Geosynthetics and Ground Engineering, 2016, 2(2):1-16. INDRARATNA B, NGO N T, RUJIKIATKAMJORN C. Behavior of geogrid-reinforced ballast under various levels of fouling[J]. Geotextiles and Geomembranes, 2011, 29(3):313-322. INDRARATNA B, KHABBAZ H, SALIM W, et al. Geotechnical properties of ballast and the role of geosynthetics[J]. Ground Improvement, 2006, 10(3):91-101. ASTM. C-131-01 Resistance to degradation of small-size coarse aggregate by abrasion and Ipact in the Los Angeles Machine, ASTM Designation[S].[S.l.]:Philadelphia American Society for Testing Materials, 2006. 中国人民共和国铁道部. TB/T 2328.1-2008铁路碎石道砟试验方法. 第1部分:洛杉矶磨耗率试验[S]. 北京:中国铁道出版社,2017. QIAN Y, BOLER H, MOAVENI M, et al. Characterizing ballast degradation through Los Angeles abrasion test and image analysis[J]. Transportation Research Record:Journal of the Transportation Research Board, 2014:142-151. SHIN H, SANTAMARINA J C. Role of particle angularity on the mechanical behavior of granular mixtures[J]. Journal of Geotechnical and Geoenviron-mental Engineering, 2012, 139(2):353-355. 邵磊,迟世春,贾宇峰. 堆石料大三轴试验的细观模拟[J]. 岩土力学,2009,30(1):239-243. SHAO Lei, CHI Shichun, JIA Yufeng. Meso-mechanical simulation of a large scale triaxial test of rockfill materials[J]. Rock and Soil Mechanics, 2009, 30(1):239-243. 刘广,荣冠,彭俊,等. 矿物颗粒形状的岩石力学特性效应分析[J]. 岩土工程学报,2013,35(3):540-550. LIU Guang, RONG Guan, PENG Jun, et al. Mechanical behaviors of rock affected by mineral particle shapes[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3):540-550.ZHAO Pingrui, LIU Xueyi, YANG Rongshan, et al. Experimental study of temperature determination method of bi-block ballastless track[J]. Journal of the China Railway Society, 2016, 38(1):92-97.
点击查看大图
计量
- 文章访问数: 592
- HTML全文浏览量: 91
- PDF下载量: 63
- 被引次数: 0