• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

清洗后的劣化道砟直剪力学特性分析

井国庆 黄红梅 常锦秀 强伟乐

井国庆, 黄红梅, 常锦秀, 强伟乐. 清洗后的劣化道砟直剪力学特性分析[J]. 西南交通大学学报, 2017, 30(6): 1055-1060. doi: 10.3969/j.issn.0258-2724.2017.06.003
引用本文: 井国庆, 黄红梅, 常锦秀, 强伟乐. 清洗后的劣化道砟直剪力学特性分析[J]. 西南交通大学学报, 2017, 30(6): 1055-1060. doi: 10.3969/j.issn.0258-2724.2017.06.003
JING Guoqing, HUANG Hongmei, CHANG Jinxiu, QIANG Weile. Analysis of Mechanical Characteristics of Degradation Railway Ballast by Direct Shear Test[J]. Journal of Southwest Jiaotong University, 2017, 30(6): 1055-1060. doi: 10.3969/j.issn.0258-2724.2017.06.003
Citation: JING Guoqing, HUANG Hongmei, CHANG Jinxiu, QIANG Weile. Analysis of Mechanical Characteristics of Degradation Railway Ballast by Direct Shear Test[J]. Journal of Southwest Jiaotong University, 2017, 30(6): 1055-1060. doi: 10.3969/j.issn.0258-2724.2017.06.003

清洗后的劣化道砟直剪力学特性分析

doi: 10.3969/j.issn.0258-2724.2017.06.003
基金项目: 

国家自然科学基金资助项目(U1234201)

详细信息
    作者简介:

    井国庆(1979-),男,副教授,博士,研究方向为轨道结构及轨道力学,电话:15901173048,E-mail:gqjing@bjtu.edu.cn

Analysis of Mechanical Characteristics of Degradation Railway Ballast by Direct Shear Test

  • 摘要: 为探究劣化道砟力学特性及其循环利用机理,分别针对清洗后掺加不同比例新道砟的劣化道砟,结合洛杉矶磨耗试验仪和应变控制式直剪仪,开展了不同比例新旧道砟混合体的直剪试验,探讨了不同垂压(50、100、200 kPa)下不同比例新旧道砟混合体应力应变特征.研究结果表明:劣化道砟抗剪强度随新道砟含量增多而增大,如100 kPa垂压下,新道砟含量为50%和100%的样本抗剪强度分别为143.4 kPa和176.7 kPa,比劣化道砟抗剪强度分别提高了24.0%和52.9%;劣化道砟剪胀现象随新道砟含量增多而越不明显,如100 kPa垂压下,新道砟含量为50%和100%的样本最大剪胀量分别为9.842 mm和7.969 mm,比劣化道砟最大剪胀量分别降低了25.8%和39.9%;清洗后劣化道砟力学性能与新道砟差别较小,在一定条件下可与新道砟混合重复使用.

     

  • BENEDETTO A, TOSTI F, CIAMPOLIL B, et al. Railway ballast condition assessment using ground-penetrating radar-an experimental, numerical simulation and modelling development[J]. Construction and Building Materials, 2017, 140:508-520.
    SELIG E T, WATERS J M. Track geotechnology and substructure management[M].[S.l.]:Thomas Telford, 1994:8-9.
    ANGELO D G, THOM N, PRESTI D L. Bitumen stabilized ballast:a potential solution for railway track-bed[J]. Construction and Building Materials, 2016, 124:118-126.
    井国庆,黄红梅,施晓毅,等. 道砟尖角折断的三轴压缩试验与离散元数值分析[J]. 西南交通大学学报,2017,52(2):216-221. JING Guoqing, HUANG Hongmei, SHI Xiaoyi, et al. Triaxial test and DEM analysis of ballast aggregate with angularity breakage[J]. Journal of Southwest Jiaotong University, 2017, 52(2):216-221.
    INDRARATNA B, SHAHIN M A, SALIM W. Use of geosynthetics for stabilizing recycled ballast in railway track substructures[C]//Proceedings of NAGS2005/GRI 19 Cooperative Conference.[S.l.]:North American Geosynthetics Society, 2005:1-15.
    INDRARATNA B, NIMBALKAR S, RUJIKIATKAMJORN C. Enhancement of rail track performance through utilisation of geosynthetic inclusions[J]. Geotech. Eng. Jl. of the SEAGS & AGSSEA, 2014, 45(1):17-27.
    杨荣山,万章博,刘学毅,等. CRTS Ⅰ型双块式无砟轨道冬季温度场试验[J]. 西南交通大学学报,2015,50(3):454-460.YANG Rongshan, WAN Zhangbo, LIU Xueyi, et al. Temperature field test of CRTS Ⅰ twin-block ballastless track in winter[J]. Journal of Southwest Jiaotong University, 2015, 50(3):454-460.
    INDRARATNA B, TENNAKOON N C, NIMBALKAR S S, et al. Behaviour of clay-fouled ballast under drained triaxial testing[J]. Geotechnique:International Journal of Soil Mechanics, 2013, 63(5):410-419.
    徐亚宁,苏启常. 信号与系统[M]. 北京:电子工业出版社,2016:40-50.
    HUDSON A, WATSON G, LE PEN L, et al. Remediation of mud pumping on a ballasted railway track[J]. Procedia Engineering, 2016, 143:1043-1050.
    ANDREWS J, PRESCOTT D, DE ROZIÈRES F. A stochastic model for railway track asset management[J]. Reliability Engineering & System Safety, 2014, 130:76-84.
    张志明,范钟秀. 气象学与气候学[M]. 北京:中国水利水电出版社,1995:38-44.
    DERSCH M S, TUTUMLUER E, PEELER C T, et al. Polyurethane coating of railroad ballast aggregate for improved performance[C]//Proceedings of the 2010 Joint Rail Conference. Urbana:Rail Transportation Division, 2010:337-342.
    孟庆林,李宁,夏磊. 建筑外饰面表面污染后太阳辐射吸收系数的测试与修正[J]. 建筑技术,2010,41(11):1043-1045.MENG Qinglin, LI Ning, XIA Lei. Testing and amendment of solar radiation absorption coefficient in building external finishes[J]. Architecture Technology, 2010, 41(11):1043-1045.
    DONOVAN H, ENG P. Recycled aggregate and geosynthetic study-City of Edmonton[C]//2011 Annual Conference of the Transportation Association of Canada Edmonton. Alberta:[s,n], 2011:1-9.
    刘文燕,耿耀明. 混凝土表面太阳辐射吸收率试验研究[J]. 混凝土与水泥制品,2004(4):8-11.LIU Wenyan, GENG Yaoming. Experimental study of the solar absorption coefficient on the concrete surface[J]. China Concrete and Cement Products, 2004(4):8-11.
    LARSSON O. Climate related thermal actions for reliable design of concrete structures[D]. Lund:Lund University, 2012.
    井国庆. 铁路有砟道床[M]. 北京:中国铁道出版社,2012:196-199.
    肖宏,高亮,侯博文. 基于离散元分析的高速铁路桥上轨枕选型[J]. 西南交通大学学报,2015,50(5):811-816. XIAO Hong, GAO Liang, HOU Bowen. 3D discrete element analysis of selection of sleeper types on high-speed railway bridge[J]. Journal of Southwest Jiaotong University, 2017, 52(2):216-221.
    苑中显,陈永昌. 工程传热学[M]. 北京:科学出版社,2012:72-74.
    MORATA M, SABORIDO C. Recycled aggregates with enhanced performance for railways track bed and form layers[J]. Journal of Sustainable Metallurg, 2017, 3(2):322-335.
    中华人民共和国国家标准. GB50176-93民用建筑热工设计规范[S]. 北京:中国建筑工业出版社,1993.
    朱伯芳. 大体积混凝土施工过程中受到的日照影响[J]. 水力发电学报,1999(3):35-41.ZHU Bofang. Influence of solar radiation on temperature of mass concrete in the process of construction[J]. Journal of Hydroelectric Engineering, 1999(3):35-41.
    European Committee for Standardization. BS EN 13450-2013 European railway ballast specification[S]. London:British Standards Institution, 2013.
    INDRARATNA B, SALIM W. Deformation and degradation mechanics of recycled ballast stabilised with geosynthetics[J]. Soils and Foundations, 2003, 43(4):35-46.
    HAN J, THAKUR J K. Sustainable roadway construction using recycled aggregates with geosynthetics[J]. Sustainable Cities and Society, 2015, 14:342-350.
    INDRARATNA B, NIMBALKAR S, CHRISTIE D. The performance of rail track incorporating the effects of ballast breakage, confining pressure and geosynthetic reinforcement[C]//Proceedings of the 8th International Conference on the Bearing Capacity of Roads, Railways, and Airfields. London:Talor and Francis Group, 2009:5-24.
    SUSSMANN T, RUEL M, CHRISMER S. Source of ballast fouling and influence considerations for condition assessment criteria[J]. Transportation Research Record:Journal of the Transportation Research Board, 2012:87-94.
    INDRATNA B, SHAHIN M A, SALIM W. Stabilising granular media and formation soil using geosynthetics with special reference to railway engineering[J]. Ground Improvement, 2007, 11(1):27-44.
    LIU J, WANG P, LIU J. Macro-and micro-mechanical characteristics of crushed rock aggregate subjected to direct shearing[J]. Transportation Geotechnics, 2015, 2:10-19.
    INFANTE D J U, MARTINEZ G M A, ARRUA P A, et al. Shear strength behavior of different geosynthetic reinforced soil structure from direct shear test[J]. International Journal of Geosynthetics and Ground Engineering, 2016, 2(2):1-16.
    INDRARATNA B, NGO N T, RUJIKIATKAMJORN C. Behavior of geogrid-reinforced ballast under various levels of fouling[J]. Geotextiles and Geomembranes, 2011, 29(3):313-322.
    INDRARATNA B, KHABBAZ H, SALIM W, et al. Geotechnical properties of ballast and the role of geosynthetics[J]. Ground Improvement, 2006, 10(3):91-101.
    ASTM. C-131-01 Resistance to degradation of small-size coarse aggregate by abrasion and Ipact in the Los Angeles Machine, ASTM Designation[S].[S.l.]:Philadelphia American Society for Testing Materials, 2006.
    中国人民共和国铁道部. TB/T 2328.1-2008铁路碎石道砟试验方法. 第1部分:洛杉矶磨耗率试验[S]. 北京:中国铁道出版社,2017.
    QIAN Y, BOLER H, MOAVENI M, et al. Characterizing ballast degradation through Los Angeles abrasion test and image analysis[J]. Transportation Research Record:Journal of the Transportation Research Board, 2014:142-151.
    SHIN H, SANTAMARINA J C. Role of particle angularity on the mechanical behavior of granular mixtures[J]. Journal of Geotechnical and Geoenviron-mental Engineering, 2012, 139(2):353-355.
    邵磊,迟世春,贾宇峰. 堆石料大三轴试验的细观模拟[J]. 岩土力学,2009,30(1):239-243. SHAO Lei, CHI Shichun, JIA Yufeng. Meso-mechanical simulation of a large scale triaxial test of rockfill materials[J]. Rock and Soil Mechanics, 2009, 30(1):239-243.
    刘广,荣冠,彭俊,等. 矿物颗粒形状的岩石力学特性效应分析[J]. 岩土工程学报,2013,35(3):540-550. LIU Guang, RONG Guan, PENG Jun, et al. Mechanical behaviors of rock affected by mineral particle shapes[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3):540-550.ZHAO Pingrui, LIU Xueyi, YANG Rongshan, et al. Experimental study of temperature determination method of bi-block ballastless track[J]. Journal of the China Railway Society, 2016, 38(1):92-97.
  • 加载中
计量
  • 文章访问数:  592
  • HTML全文浏览量:  91
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-29
  • 刊出日期:  2017-12-25

目录

    /

    返回文章
    返回