Study of Ramp Control Method for Urban Expressways Using Improvised ALINEA Algorithm
-
摘要: 为解决传统的ALINEA(asservissement linéaire d'entrée autoroutière)匝道控制算法未考虑城市快速路入口匝道排队溢出,造成关联交叉口交通拥堵等问题,在经典的ALINEA匝道控制算法的基础上,提出了一种新的基于主干道车流量预测的城市快速路入口匝道控制方法.该方法采用遗传算法优化的小波神经网络来预测城市快速路交通流量;引入主干道车流可插入间隙和匝道排队分级控制原则,实现了对城市快速路入口匝道控制率的动态调节.通过微观仿真实验比较两种算法的控制效果.结果表明:与传统的ALINEA匝道控制算法相比,新的控制方法不仅能够有效保证主线交通通行能力,同时还使匝道平均旅行时间减少了24.8%.Abstract: The traditional ALINEA (asservissement linéaire d'entrée autoroutière) ramp control algorithm does not take into consideration the ramp queue overflow of urban expressways, and may thus cause traffic congestion at the apposite expressway intersection. By incorporating the classical ALINEA ramp control algorithm, a new on-ramp control method for urban expressways has been proposed, based on traffic-flow prediction for urban expressways. The proposed method focuses on developing a wavelet neural network optimized by a genetic algorithm (GA-WNN) for predicting the traffic-flow of an urban expressway. The gap acceptance theory and the grading principle of ramp queues have also been introduced in the proposed methodology, thus leading to the realization of dynamic regulation of the ramp control rate for urban expressways. The control effects of the classical ALINEA and the proposed algorithm were compared through a micro-simulation experiment, and the results show that the proposed model can effectively improve the capacity of the arterial road, and can reduce the average trip time of the ramp by approximately 24.8%.
-
Key words:
- urban expressway /
- short-term traffic flow forecasting /
- ramp metering /
- ALINEA
-
乔彦甫. 设施选址和线路设计联合决策问题研究[D]. 成都:西南交通大学.2015. PAPAGEORGIOU M, KOTSIALOS A. Freeway ramp metering:an overview[J]. Intelligent Transportation Systems IEEE Transactions on, 2000, 3(4):271-281. 闫茂德,常楠楠,张昌利. 城市快速路网行程时间计算与最优路径选择算法[J]. 西南交通大学学报,2014,49(5):811-816. YAN Maode, CHANG Nannan, ZHANG Changli. Travel time computation and optimal path selection algorithm of urban expressway network[J]. Journal of Southwest Jiaotong University, 2014, 49(5):811-816. 邴其春,龚勃文,杨兆升,等. 基于投影寻踪动态聚类的快速路交通状态判别[J]. 西南交通大学学报,2015,50(6):1164-1169. BING Qichun, GONG Bowen, YANG Zhaosheng, et al. Traffic state identification for urban expressway based on projection pursuit dynamic cluster model[J]. Journal of Southwest Jiaotong University, 2015, 50(6):1164-1169. WATTLEWORTH J A. Peak period analysis and control of a freeway system[J]. Highway Research Record, 1967, 157:1-21. MASHER D P, ROSS D W, WONG P J, et al. Guidelines for design and operating of ramp control systems[R].California:Stanford Research Institute, 1975. PAPAGEORGIOU M, HADJ-SALEM H, BLOSSEVILLE J M. ALINEA:a local feedback control law for on-ramp metering[J]. Transportation Research Record, 1991, 1320(1):58-67. SMARAGDIS E, PAPAGEORGIOU M. Series of new local ramp metering strategies:emmanouil smaragdis and markos papageorgiou[J]. Transportation Research Record Journal of the Transportation Research Board, 2003, 1856(1):74-86. PAPAGEORGIOU M, HAJ-SALEM H, MIDDELHAM F. ALINEA local ramp metering:summary of field results[J]. Transportation Research Record Journal of the Transportation Research Board, 1997, 1603(1):90-98. PAESANI G, KERR J, PEROVICH P, et al. System wide adaptive ramp metering in southern California[C]//ITS America 7th Annual Meeting. Washington D. C.:[s.n.], 1997, 1-18. STEPHANEDES Y J. Implementation of on-line zone control strategies for optimal ramp metering in the Minneapolis Ring Road[C]//Seventh International Conference on IET. London:[s.n.], 1994, 181-184. ZHANG M, KIM T, NIE X, et al. Evaluation of on-ramp control algorithms[R]. Berkeley:California PATH Research Report UCB-ITS-PRR-2001-36, 2001. 张海军. 城市高速道路入口匝道动态协调控制方法研究[D]. 上海:同济大学,2005. 姚志洪, 蒋阳升, 韩鹏,等. 基于神经网络的小时间粒度交通流预测模型[J]. 交通运输系统工程与信息,2017,17(1):67-73. YAO Zhihong, JIANG Yangsheng, HAN Peng, et al. Traffic flow prediction model based on neural network in small time granularity[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(1):67-73. YAO Z H, HAN P, ZHAO B, et al. High-granularity dynamic traffic flow prediction model based on artificial neural network[C]//Transportation Research Board of the National Academies. Washington D. C.:[s.n.], 2017:1-14. 陈丹,胡明华,张洪海,等. 基于贝叶斯估计的短时空域扇区交通流量预测[J]. 西南交通大学学报,2016,51(4):807-814. CHEN Dan, HU Minghua, ZHANG Honghai, et al. Short-term traffic flow prediction of airspace sectors based on bayesian estimation theory[J]. Journal of Southwest Jiaotong University, 2016, 51(4):807-814. 方传武. 城市快速路入口匝道流量控制研究[D]. 成都:西南交通大学,2016. 周小鹏. 城市快速路入口匝道控制研究[D]. 上海:同济大学,2006. 郑玲钰,赵益,王忠宇,等. 基于用户感知的城市道路交通服务水平评价方法[J]. 同济大学学报:自然科学版,2016,44(5):753-757. ZHENG Lingyu, ZHAO Yi, WANG Zhongyu, et al. Level of service evaluation of urban streets based on user perception[J]. Journal of Tongji University:Natural Science, 2016, 44(5):753-757.
点击查看大图
计量
- 文章访问数: 763
- HTML全文浏览量: 132
- PDF下载量: 101
- 被引次数: 0