Drawbead Optimisation in Stamping Using SA-RBF Neural Networks
-
摘要: 为提高神经网络预测精度,利用模拟退火算法对基于k-均值聚类的RBF(radical basis function)神经网络进行了结构优化.首先,以NUMISHEET 02翼子板冲压成形为研究对象,以6条等效拉延筋力作为输入变量,基于Spearman相关分析和拉丁超立方抽样抽取相关性系数较小的数据作为SA-RBF(simulated annealing-RBF)神经网络的训练样本;其次,将训练样本进行Dynaform数值仿真,以起皱缺陷和拉裂缺陷建立的成形质量评价函数为目标函数,通过SA-RBF神经网络建立等效拉延筋力与目标函数间的非线性映射关系;再次,利用NSGA-Ⅱ算法对其进行求解得到Pareto最前沿,通过灰色关联分析理论确定最佳拉延筋力;第三,利用优化的拉延筋力对翼子板成形进行数值仿真分析,成形极限图结果表明,优化后的成形件起皱显著减少,而且塑性变形更加均匀,提高了成形质量.Abstract: The structure of a radial basis function (RBF) neural network based on the k-means clustering algorithm was optimised by employing the simulated annealing algorithm for improving the prediction accuracy. The NUMISHEET 02 fender was considered as the object of research and six equivalent drawbead forces were used as input variables. Based on Spearman correlation analysis and Latin hypercube sampling, the data which had smaller correlation coefficient values were chosen as training samples for the simulated annealing-radial basis function (SA-RBF) neural network. The numerical simulations of training samples were performed by employing the Dynaform software package. The evaluation functions of forming quality were established based on the wrinkling defects and crack defects. The nonlinear relationship between the equivalent drawbead force and the associated objective function was established by incorporating a SA-RBF neural network. NSGA-Ⅱ algorithm was employed to achieve the Pareto frontier and the best equivalent drawbead forces were determined by applying grey correlation analysis theory. Finally, the numerical simulation of fender forming was performed based on the optimised drawbead forces. The resultant forming limit diagram (FLD) indicates decreased wrinkles in the optimised forming part and greater uniformity in the plastic deformation, thereby leading to improvement in the quality of fender forming.
-
Key words:
- drawbead /
- simulated annealing algorithm /
- RBF neural network /
- NSGA-Ⅱ algorithm
-
ABLAT M A, QATTAWI A. Numerical simulation of sheet metal forming:a review[J]. International Journal of Advanced Manufacturing Technology, 2017, 89(1):1235-1250. HALKACI H S, TURKOZ M, DILMEC M. Enhancing formability in hydromechanical deep drawing process adding a shallow drawbead to the blank holder[J]. Journal of Materials Processing Technology, 2014, 214(8):1638-1646. 陈涛,高晖,李光耀,等. 真实拉延筋参数优化建模及其在薄板冲压仿真中的应用[J]. 中国机械工程,2006,17(增刊1):23-26. CHEN Tao, GAO Hui, LI Guangyao, et al. New method of modeling drawbead geometry and its application in sheet metal forming[J]. China Mechanical Engineering, 2006, 17(Sup.1):23-26. CHUNG Y C. Geometric modelling of drawbeads using vertical section sweeping[J]. CAD Computer Aided Design, 2013, 45(12):1556-1561. 印雄飞,何丹农,彭颖红,等. 板料成形有限元分析中的等拉延筋模型[J]. 锻压装备与制造技术,1999,34(5):49-51. YIN Xiongfei, HE Dannong, PENG Yinghong, et al. Equivalent drawbead model in FEA of sheet forming[J]. China Metalforming Equipment & Manufacturing Technology, 1999, 34(5):49-51. 郑刚,李光耀,孙光永,等. 基于近似模型的拉延筋几何参数反求[J]. 中国机械工程,2006,17(19):1988-1992. ZHENG Gang, LI Guangyao, SUN Guangyong,et al. Geometrical parameter inverse problem for drawbeads based on the approximate model[J]. China mechanical Engineering, 2006, 17(19):1988-1992. 谢延敏,王新宝,王智,等. 基于灰色理和GA-BP的拉延筋参数反求[J]. 机械工程学报,2013,49(4):44-50. XIE Yanmin, WANG Xinbao, WANG Zhi, et al. Reverse of drawbead parameters based on grey theory and GA-BP[J]. Journal of Mechanical Engineering, 2013, 49(4):44-50. 谢延敏,何育军,田银. 基于RBF神经网络模型的板料成形变压边力优化[J]. 西南交通大学学报,2016,51(1):121-127. XIE Yanmin, HE Yujun, TIAN Yin. Optimization of variable blank holder forces in sheet metal forming based on RBF neural network model[J]. Journal of Southwest Jiaotong University, 2016, 51(1):121-127. 孙光永,李光耀,郑刚,等. 拉延成形多目标序列响应面法优化设计方法[J]. 力学学报,2010,42(2):245-255. SUN Guangyong, LI Guangyao, ZHENG Gang, et al. Multi-objective optimization for sheet metal forming of drawing with successive response surface method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(2):245-255. ZHANG Qiuchong, LIU Yuqi, ZHANG Zhibing. A new method for automatic optimization of drawbead geometry in the sheet metal forming process based on an iterative learning control model[J]. International Journal of Advanced Manufacturing Technology, 2017, 88(5/6/7/8):1845-1861. XIE Yanmin, XIONG Wencheng, ZHUO Dezhi, et al. Drawbead geometric parameters using an improved equivalent model and PSO-BP neural network[J]. Proceedings of the Institution of Mechanical Engineers, Part L:Journal of Materials Design and Applications, 2016, 230(4):899-910. 庞峰. 模拟退火算法的原理及算法在优化问题上的应用[D]. 吉林:吉林大学,2006. 田银,谢延敏,孙新强,等. 基于鱼群RBF神经网络和改进蚁群算法的拉深成形工艺参数优化[J]. 锻压技术,2014,39(12):129-136.TIAN Yin, XIE Yanmin, SUN Xinqiang, et al. Process parameters optimization of deep drawing based on fish RBF neural network and improved ant colony algorithm[J]. Forging & Stamping Technology, 2014, 39(12):129-136. 赵森. 基于精英集选择与扩展策略的多目标智能算法研究[D]. 广州:华南理工大学,2013. TANG Bingtao, SUN Jixian, ZHAO Zhen, et al. Optimization of drawbead design in sheet forming using one step finite element method coupled with response surface methodology[J]. International Journal of Advanced Manufacturing Technology, 2006, 31(3/4):225-234. TAKAMURA M, SUNAGA H, KUWABARA T, et al. Springback simulation of automotive front fender panel in multi-operation stamping process using static-explicit FEM code[C]//Proceedings of the 5th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes, NUMISHEET 2002. Jeju Island:[s.n.], 2002:379-384. 王辉. 成形极限图的获取方法与其在金属板料成形中的应用[D]. 南京:南京航空航天大学,2011. 谢延敏,于沪平,陈军,等. 基于灰色系统理论的方盒件拉深稳健设计[J]. 机械工程学报,2007,43(3):54-58. XIE Yanmin, YU Huping, CHEN Jun, et al. Application of grey theory in deep drawing robust design[J]. Chinese Journal of Mechanical Engineering, 2007, 43(3):54-58.
点击查看大图
计量
- 文章访问数: 513
- HTML全文浏览量: 70
- PDF下载量: 93
- 被引次数: 0