• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于SA-RBF神经网络的冲压成形拉延筋优化

谢延敏 唐维 黄仁勇 熊文诚 卓德志

谢延敏, 唐维, 黄仁勇, 熊文诚, 卓德志. 基于SA-RBF神经网络的冲压成形拉延筋优化[J]. 西南交通大学学报, 2017, 30(5): 970-976,993. doi: 10.3969/j.issn.0258-2724.2017.05.018
引用本文: 谢延敏, 唐维, 黄仁勇, 熊文诚, 卓德志. 基于SA-RBF神经网络的冲压成形拉延筋优化[J]. 西南交通大学学报, 2017, 30(5): 970-976,993. doi: 10.3969/j.issn.0258-2724.2017.05.018
XIE Yanmin, TANG Wei, HUANG Renyong, XIONG Wencheng, ZHUO Dezhi. Drawbead Optimisation in Stamping Using SA-RBF Neural Networks[J]. Journal of Southwest Jiaotong University, 2017, 30(5): 970-976,993. doi: 10.3969/j.issn.0258-2724.2017.05.018
Citation: XIE Yanmin, TANG Wei, HUANG Renyong, XIONG Wencheng, ZHUO Dezhi. Drawbead Optimisation in Stamping Using SA-RBF Neural Networks[J]. Journal of Southwest Jiaotong University, 2017, 30(5): 970-976,993. doi: 10.3969/j.issn.0258-2724.2017.05.018

基于SA-RBF神经网络的冲压成形拉延筋优化

doi: 10.3969/j.issn.0258-2724.2017.05.018
基金项目: 

国家自然科学基金资助项目(51005193)

国家大学生创新创业训练计划项目(201710613033)

详细信息
    作者简介:

    谢延敏(1975-),男,副教授,博士,研究方向为先进塑性加工技术仿真和稳健设计,E-mail:xie_yanmin@swjtu.edu.cn

Drawbead Optimisation in Stamping Using SA-RBF Neural Networks

  • 摘要: 为提高神经网络预测精度,利用模拟退火算法对基于k-均值聚类的RBF(radical basis function)神经网络进行了结构优化.首先,以NUMISHEET 02翼子板冲压成形为研究对象,以6条等效拉延筋力作为输入变量,基于Spearman相关分析和拉丁超立方抽样抽取相关性系数较小的数据作为SA-RBF(simulated annealing-RBF)神经网络的训练样本;其次,将训练样本进行Dynaform数值仿真,以起皱缺陷和拉裂缺陷建立的成形质量评价函数为目标函数,通过SA-RBF神经网络建立等效拉延筋力与目标函数间的非线性映射关系;再次,利用NSGA-Ⅱ算法对其进行求解得到Pareto最前沿,通过灰色关联分析理论确定最佳拉延筋力;第三,利用优化的拉延筋力对翼子板成形进行数值仿真分析,成形极限图结果表明,优化后的成形件起皱显著减少,而且塑性变形更加均匀,提高了成形质量.

     

  • ABLAT M A, QATTAWI A. Numerical simulation of sheet metal forming:a review[J]. International Journal of Advanced Manufacturing Technology, 2017, 89(1):1235-1250.
    HALKACI H S, TURKOZ M, DILMEC M. Enhancing formability in hydromechanical deep drawing process adding a shallow drawbead to the blank holder[J]. Journal of Materials Processing Technology, 2014, 214(8):1638-1646.
    陈涛,高晖,李光耀,等. 真实拉延筋参数优化建模及其在薄板冲压仿真中的应用[J]. 中国机械工程,2006,17(增刊1):23-26. CHEN Tao, GAO Hui, LI Guangyao, et al. New method of modeling drawbead geometry and its application in sheet metal forming[J]. China Mechanical Engineering, 2006, 17(Sup.1):23-26.
    CHUNG Y C. Geometric modelling of drawbeads using vertical section sweeping[J]. CAD Computer Aided Design, 2013, 45(12):1556-1561.
    印雄飞,何丹农,彭颖红,等. 板料成形有限元分析中的等拉延筋模型[J]. 锻压装备与制造技术,1999,34(5):49-51. YIN Xiongfei, HE Dannong, PENG Yinghong, et al. Equivalent drawbead model in FEA of sheet forming[J]. China Metalforming Equipment & Manufacturing Technology, 1999, 34(5):49-51.
    郑刚,李光耀,孙光永,等. 基于近似模型的拉延筋几何参数反求[J]. 中国机械工程,2006,17(19):1988-1992. ZHENG Gang, LI Guangyao, SUN Guangyong,et al. Geometrical parameter inverse problem for drawbeads based on the approximate model[J]. China mechanical Engineering, 2006, 17(19):1988-1992.
    谢延敏,王新宝,王智,等. 基于灰色理和GA-BP的拉延筋参数反求[J]. 机械工程学报,2013,49(4):44-50. XIE Yanmin, WANG Xinbao, WANG Zhi, et al. Reverse of drawbead parameters based on grey theory and GA-BP[J]. Journal of Mechanical Engineering, 2013, 49(4):44-50.
    谢延敏,何育军,田银. 基于RBF神经网络模型的板料成形变压边力优化[J]. 西南交通大学学报,2016,51(1):121-127. XIE Yanmin, HE Yujun, TIAN Yin. Optimization of variable blank holder forces in sheet metal forming based on RBF neural network model[J]. Journal of Southwest Jiaotong University, 2016, 51(1):121-127.
    孙光永,李光耀,郑刚,等. 拉延成形多目标序列响应面法优化设计方法[J]. 力学学报,2010,42(2):245-255. SUN Guangyong, LI Guangyao, ZHENG Gang, et al. Multi-objective optimization for sheet metal forming of drawing with successive response surface method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(2):245-255.
    ZHANG Qiuchong, LIU Yuqi, ZHANG Zhibing. A new method for automatic optimization of drawbead geometry in the sheet metal forming process based on an iterative learning control model[J]. International Journal of Advanced Manufacturing Technology, 2017, 88(5/6/7/8):1845-1861.
    XIE Yanmin, XIONG Wencheng, ZHUO Dezhi, et al. Drawbead geometric parameters using an improved equivalent model and PSO-BP neural network[J]. Proceedings of the Institution of Mechanical Engineers, Part L:Journal of Materials Design and Applications, 2016, 230(4):899-910.
    庞峰. 模拟退火算法的原理及算法在优化问题上的应用[D]. 吉林:吉林大学,2006.
    田银,谢延敏,孙新强,等. 基于鱼群RBF神经网络和改进蚁群算法的拉深成形工艺参数优化[J]. 锻压技术,2014,39(12):129-136.TIAN Yin, XIE Yanmin, SUN Xinqiang, et al. Process parameters optimization of deep drawing based on fish RBF neural network and improved ant colony algorithm[J]. Forging & Stamping Technology, 2014, 39(12):129-136.
    赵森. 基于精英集选择与扩展策略的多目标智能算法研究[D]. 广州:华南理工大学,2013.
    TANG Bingtao, SUN Jixian, ZHAO Zhen, et al. Optimization of drawbead design in sheet forming using one step finite element method coupled with response surface methodology[J]. International Journal of Advanced Manufacturing Technology, 2006, 31(3/4):225-234.
    TAKAMURA M, SUNAGA H, KUWABARA T, et al. Springback simulation of automotive front fender panel in multi-operation stamping process using static-explicit FEM code[C]//Proceedings of the 5th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes, NUMISHEET 2002. Jeju Island:[s.n.], 2002:379-384.
    王辉. 成形极限图的获取方法与其在金属板料成形中的应用[D]. 南京:南京航空航天大学,2011.
    谢延敏,于沪平,陈军,等. 基于灰色系统理论的方盒件拉深稳健设计[J]. 机械工程学报,2007,43(3):54-58. XIE Yanmin, YU Huping, CHEN Jun, et al. Application of grey theory in deep drawing robust design[J]. Chinese Journal of Mechanical Engineering, 2007, 43(3):54-58.
  • 加载中
计量
  • 文章访问数:  513
  • HTML全文浏览量:  70
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-13
  • 刊出日期:  2017-10-25

目录

    /

    返回文章
    返回