Investigation on Effect of Torque on Fretting Damage of Test Facility Shaft
-
摘要: 为了探索扭矩作用下转动轴的微动损伤特性,利用JD-1轮轨模拟试验机,通过改变载荷大小,研究了制动力矩对转轴与轴承内圈过盈配合面微动损伤特性的影响,并借助激光扫描共聚焦显微镜和扫描电子显微镜观察损伤表面的磨痕和剖面微观组织,分析了不同扭矩载荷下转轴表面的微动损伤机理.结果表明:在垂向试验载荷和制动力矩的作用下,试验机转轴在与左右两端轴承内圈过盈配合面处出现了微动损伤,磨损形式主要表现为磨粒磨损和粘着磨损;随着制动力矩的增加,转轴配合面的表面磨损加剧,塑性变形层变厚约75%,微动损伤变得更严重;左端配合面的磨损和塑性变形均比右端严重,两端配合面处的塑性变形层厚度分布不均;转轴配合面处产生了微裂纹,且左端产生的裂纹多于右端,微裂纹的数量随着制动力矩的增加而增多了约6倍,裂纹扩展角度也变大约50%.Abstract: The effect of torque on the fretting damage of an interface fit between the shaft and inner surface of bearings was investigated on the JD-1 wheel/rail simulation test facility with different loads. The fretting damage mechanism of the shaft surface was analyzed by observing the wear scar and microstructure of the cross-section of specimens by using a laser scanning confocal microscope and scanning electronic microscopy. The results indicate that the fretting damage appears on the interface fit between the shaft and inner surface of bearings under vertical load and braking torque, the wear is in the form of adhesive wear and abrasive wear. With an increase in braking torque, the wear on the surfaces of shaft is more serious, the plastic deformation layer is thicker by approximately 75%, the fretting damage becomes more severe. Moreover, the wear and plastic deformation on the left surface are more severe than those on the right, and the plastic layer is uneven. Micro cracks appear on the interface fit, and there are more cracks on the left interface fit than those on the right, the number of micro cracks increase by approximately six times with the increase of the braking torque, and the crack propagation angle also increases by approximately 50%.
-
Key words:
- test facility shaft /
- braking torque /
- fretting damage
-
WATERHOUSE R B. Fretting corrosion[M]. Oxford:Pergamon Press, 1972:1-7. 周仲荣, VINCENT L. 微动磨损[M]. 北京:科学出版社,2002:1. 张远彬,鲁连涛,张继旺,等. 压装轴微动疲劳主裂纹萌生位置的分析[J]. 机械工程学报,2013,49(10):90-96. ZHANG Yuanbin, LU Liantao, ZHANG Jiwang, et al. Analysis of fretting fatigue crack initiation location in press-fitted shaft[J]. Journal of Mechanical Engineering, 2013, 49(10):90-96. TRUMAN C E, BOOKER J D. Analysis of a shrink-fit failure on a gear hub/shaft assembly[J]. Engineering Failure Analysis, 2007, 14(4):557-572. 沈明学,彭金方,郑健峰,等. 微动疲劳研究进展[J]. 材料工程,2010(12):86-91. SHEN Mingxue, PENG Jinfang, ZHENG Jianfeng, et al. Study and development of fretting fatigue[J]. Journal of Materials Engineering, 2010(12):86-91. 曾飞,陈光雄,周仲荣. 基于ANSYS的轮对过盈配合微动分析[J]. 机械工程学报,2011,47(5):121-125. ZENG Fei, CHEN Guangxiong, ZHOU Zhongrong. Fretting analysis of interference fitting of wheel-set based on ANSYS[J]. Journal of Mechanical Engineering, 2011, 47(5):121-125. 杨广雪,谢基龙,李强,等. 过盈配合微动损伤的关键参数[J]. 机械工程学报,2010,46(16):53-59. YANG Guangxue, XIE Jilong, LI Qiang, et al. Key parameters of fretting damage under shrink fit[J]. Journal of Mechanical Engineering, 2010, 46(16):53-59. 韩传军,张杰. 空心轴过盈配合的微动接触分析[J]. 华中科技大学学报:自然科学版,2013,41(5):23-27. HAN Chuanjun, ZHANG Jie. Analyzing fretting contact of hollow shafts with interference fit[J]. Journal of Huazhong University of Science and Technology:Natural Science Edition, 2013, 41(5):23-27. YILDIZ F, YETIM A F, ALSARAN A, et al. Fretting fatigue properties of plasma nitrided AISI 316 L stainless steel:experiments and finite element analysis[J]. Tribology International, 2011, 44(12):1979-1986. FREDERIC L, AURELIAN V, BERNARD S. Fretting fatigue strength reduction factor for interference fits[J]. Simulation Modelling Practice and Theory, 2011, 19(9):1811-1823. LIU Q Y, ZHANG B, ZHOU Z R. An experimental study of rail corrugation[J]. Wear, 2003, 255(7/8/9/10/11/12):1121-1126. 花银群,陈瑞芳,杨继昌,等. 激光淬火和冲击复合强化处理40Cr钢的耐磨性能研究[J]. 摩擦学学报,2003, 23(5):448-450. HUA Yinqun, CHEN Ruifang, YANG Jichang, et al. Study on wear-resistance of laser quenched and shocked 40Cr steel[J]. Tribology, 2003, 23(5):448-450. 钟雯,王文健,宋纾崎,等. 曲率半径对钢轨滚动接触疲劳性能的影响[J]. 西南交通大学学报,2009, 44(2):254-257. ZHONG Wen, WANG Wenjian, SONG Shuqi, et al. Effect of curve radius on rolling contact fatigue properties of rails[J]. Journal of Southwest Jiaotong University, 2009, 44(2):254-257. 熊嘉阳,金学松. 铁路曲线钢轨初始波磨演化分析[J]. 机械工程学报,2006,42(6):60-66. XIONG Jiayang, JIN Xuesong. Analysis on evolution of initial rail corrugation[J]. Chinese Journal of Mechanical Engineering, 2006, 42(6):60-66. 钟雯,董霖,王宇,等. 高速与重载铁路的疲劳磨损对比研究[J]. 摩擦学学报,2012,32(1):96-101. ZHONG Wen, DONG Lin, WANG Yu, et al. A comparative investigation between rolling contact fatigue and wear of high-speed and heavy-haul railway[J]. Tribology, 2012, 32(1):96-101. 邱海波,裴有福,金元生. 塑性变形对钢轨钢磨损影响的试验研究[J]. 摩擦学学报,1996,16(1):80-84. QIU Haibo, PEI Youfu, JIN Yuansheng. An experimental investigation into the influences of plastical deformation on rail steel wear[J]. Tribology, 1996, 16(1):80-84.
点击查看大图
计量
- 文章访问数: 450
- HTML全文浏览量: 57
- PDF下载量: 101
- 被引次数: 0