Forming Rules and Performances of Laser-MAG Hybrid Welding Joints of SUS301L-MT Stainless Steel
-
摘要: 为了给新一代城轨列车的焊接制造提供技术支持,以列车用6 mm SUS301L-MT奥氏体不锈钢为研究对象,采用焊缝截面分析、金相观察、X射线衍射法、残余应力测试等手段,研究了激光-MAG(metal active gas welding)复合焊接头的成型规律及接头性能.结果表明:激光功率、离焦量增大能增加焊缝上表面熔宽;焊接速度增加后,焊缝中部熔宽和下表面熔宽明显减小;焊缝宽度比随离焦量的增大显著增加;焊缝组织为奥氏体+δ铁素体;接头纵向残余应力在接头中心位置存在极大值,约为330 MPa.Abstract: This study focusses on 6 mm-thick SUS301L-MT austenitic stainless steel, which will be used for the manufacture of next-generation city rail trains. In order to establish the technical foundation for the manufacture of city rail trains, the forming rules and performances of 6 mm-thick SUS301L-MT austenitic stainless steel laser-MAG (metal active gas welding) hybrid welding T-joints were studied using weld cross-section analysis, metallographic observation, X-ray diffraction residual stress tests, etc. The increase of laser power and defocusing distance can improve the width of the weld top surface. When welding speed increases, the widths of the weld middle section and weld bottom surface significantly decrease. The width of the weld cross-section increases significantly with the increase in defocusing distance. The microstructure of the weld zone is austenite mixed with ferrite. The maximum longitudinal residual stress appears at the center of the joint, with a value of 330 MPa.
-
苏柯,谢红兵,岳译新. SUS301L系列不锈钢在轻量化城轨车辆车体上的应用[J]. 电力机车与城轨车辆,2010,33(6):23-26. SU Ke, XIE Hongbing, YUE Yixin. Application of SUS301L stainless steel on light weight urban rail car body[J]. Electric Locomotives and Urban Rail Vehicle, 2010, 33(6):23-26. 吴圣川,喻程,张卫华,等. 铝合金熔焊气孔与裂纹交互作用模拟[J]. 西南交通大学学报,2014,50(5):855-861. WU Shengchuan, YU Cheng, ZHANG Weihua,et al. Simulation of interactions between pores and cracksinside fusion welded aluminum alloys[J]. Journal of Southwest Jiaotong University, 2014, 50(5):855-861. 刘佳. 轨道客车用SUS301L奥氏体不锈钢激光叠焊技术研究[D]. 长春:长春理工大学,2012. RIBIC B, PALMER T A, DEBROY T. Problems and issues in laser-arc hybrid welding[J]. International Materials Reviews, 2009, 54(4):223-244. STEEN WM. Arc augmented laser processing of materials[J]. Journal of Applied Physics, 1980, 51(11):5636-5639. SEIJI K. Handbook of laser welding technologies[M]. Cambridge:Woodhead Publishing Limited, 2013:3-16. 赵耀邦,成群林,徐爱杰,等. 激光-电弧复合焊接技术的研究进展及应用现状[J]. 航天制造技术,2014(4):11-14. ZHAO Yaobang, CHENG Qunlin, XU Aijie, et al. Research progress and application status of laser arc hybrid welding technology[J]. Aerospace Manufacturing Technology, 2014(4):11-14. ERIKSSON I, POWELL J, KAPLAN A. Guidelines in the choice of parameters for hybrid laser arc welding with fiber lasers[J]. Physics Procedia, 2013, 41:119-127. MORADI M, GHOREISHI M, FROSTEVARG J, et al. An investigation on stability of laser hybrid arc welding[J]. Optics and Lasers in Engineering, 2013, 51(4):481-487. 苟国庆,黄楠,陈辉,等. X射线衍射法测试高速列车车体铝合金残余应力[J]. 西南交通大学学报,2012,47(4):618-622. GOU Guoqing, HUANG Nan, CHEN Hui, et al. Detection of residual stress in aluminum alloy carbody of high-speed train using X-ray diffraction technology[J]. Journal of Southwest Jiaotong University, 2012, 47(4):618-622. MA N, LI L, HUANG H, et al. Residual stresses in laser-arc hybrid welded butt-joint with different energy ratios[J]. Journal of Materials Processing Technology, 2015, 220:36-45. LIU Liming, CHEN Minghua. Interactions between laser and arc plasma during laser-arc hybrid welding of magnesium alloy[J]. Optics and Lasers in Engineering, 2011, 49(9/10):1224-1231. 吴圣川. 铝合金的激光焊接及性能评价[M]. 北京:国防工业出版社,2014:93-94.
点击查看大图
计量
- 文章访问数: 501
- HTML全文浏览量: 83
- PDF下载量: 54
- 被引次数: 0